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Kurzfassung

Diese Masterarbeit zielt ab, einen gründlichen Vergleich zwischen vier Texturalgorith-
men zu liefern. Die Kapazität dieser Algorithmen zwischen Patienten mit und ohne
Osteoarthrose zu unterscheiden, frühe Anzeichen der Erkrankung zu entdecken und die
Entwicklung zu verfolgen anhand von nur 2D Radiographien des trabekulären Gewebes
des Knies, wird untersucht. Wegen der fraktalen Eigenschaften des trabekulären Gewebes,
werden zwei fraktale Algorithmen (Bone Variance Value (BVV) and Bone Score Value
(BSV)) eingeführt. Diese versuchen die intrinsische 3D Komplexität des Knochens zu
charakterisieren. Der dritte Algorithmus (Bone Entropy Value (BEV), basiert auf Shan-
non’s Entropie) stammt aus der Informationstheorie und zielt ab, die Knochenstruktur
in Hinsicht auf Informationskomplexität zu beschreiben. Der letzte Algorithmus (Bone
Coocurrence Value (BCV)) basiert auf der Grauwertematrix eines Bildes und beschreibt
die Bildtextur in Hinsicht auf spezifische Haralick Eigenschaften. Wenn diese Versuche
erfolgreich wären, würden sie ein riesiges Potential besitzen die Kosten, die mit der Dia-
gnose und Behandlung von Osteoarthrose verbunden sind, zu senken. Das würde durch
die komplette Automation der Diagnoseprozedur geschehen. Die früheren Behandlungs-
und Risikoverringerungsmaßnahmen sind günstiger als die Maßnahmen, die bei einem
fortgeschrittenen Zustand der Erkrankung (Operation, Implantante, usw.), notwendig
sind.

Zunächst wird eine Motivation zur Früherkennung von Osteoarthrose gegeben. Zweitens
werden eine detaillierte Beschreibung und ein mathematischer Hintergrund der Algorith-
men präsentiert und anhand von künstlichen Daten validiert. Drittens werden die für
Klassifikationstests verwendeten Datensätze eingeführt. Viertens werden die verwende-
ten statistischen Methoden und neuronalen Netzwerkmodelle vorgestellt und diskutiert.
Fünftens werden die von jedem Algorithmus erzeugten Eigenschafen (features) diskutiert
und ihre unabhängige und kombinierte Fähigkeit, zwischen Knochen mit frühen Anzei-
chen von Osteoarthrose und gesunden Knochen zu unterscheiden, untersucht. Auch die
Fähigkeit der Verfolgung der Entwicklung über die Jahre hinweg wird durch statistische
Tests quantifiziert. Auch in diesem Teil präsentieren wir die besten Klassifizierungswerte
(classification scores), die von den optimalen neuronalen Netzen für jeden Anwendungsfall
berechnet werden. Schließlich werden Gedanken zu zukünftigen Verbesserungen und
die Anwendbarkeit der Algorithmen bei anderen anatomischen Kontexten, bei anderen
Krankheiten oder in anderen Bereichen, wie Histologie und Mammographie, gemacht.
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Mit dieser Arbeit zeigen wir, dass der Stand der Technik in Hinsicht auf Osteoarthrose-
vorhersage durch die Verwendung von Modellen, die nur auf reinen Textureigenschaften
basieren, übertroffen werden kann. Unsere geschlechtsstratifizierte Analyse ergibt einen
Vorhersagewert von 83% für Männer und 81% für Frauen in Bezug auf Area Under the
Receiver Operating Characteristic Curve (ROC-AUC).



Abstract

This master thesis aims to provide an in-depth comparison of four texture algorithms
in their capacity of discriminating patients with osteoarthritis (OA) from the ones
without, recognizing early signs of Osteoarthritis and tracking disease progression from
2D radiographs of the knee trabecular bone (TB). Given the fractal properties of the
trabecular bone (TB), two fractal-based algorithms (Bone Variance Value (BVV) and
Bone Score Value (BSV)) that try to characterize the complexity of the underlying
3D structure of the bone are presented. The third algorithm (Bone Entropy Value
(BEV), based on Shannon’s Entropy) stems from the information theory and aims to
describe the bone structure in terms of information complexity. The last algorithm
(Bone Coocurrence Value (BCV)) is based on the co-occurrence matrix of an image and
describes the image texture in terms of certain Haralick features. If successful, such
algorithms posses a great potential to lower the costs (financial, time) associated with
the diagnosis of osteoarthritis (OA) through automation of the procedure, and with the
treatment. The earlier treatments and risk reduction measures are less costly than the
procedures involved due to a more advanced stage of the disease (surgery, implants, etc.).

First, a motivation for the detection of early osteoarthritis (OA) is given. Second, a
detailed description and mathematical background of the algorithms are presented and
validated on sample, artificial data. Third, the employed data sets used for classification
tests are introduced. Fourth, the statistical methods and neural network models employed
are presented and discussed. Fifth, the features produced by each algorithm are discussed
and their independent and combined capacity of discriminating between bones with
early signs of OA and healthy bones. Also the capacity of tracking OA progression
through the years is quantified by statistical tests. Also in this part we present the
best classification scores obtained from the most optimal neural networks for each use
case. Finally, thoughts on future improvements and the generalization of the algorithms
in other anatomical contexts, for other diseases or in other fields, like histology and
mammography, are made.

In this work we show that the state-of-the-art in OA prediction can be surpassed by
utilizing only models based on texture features alone. Our gender-stratified analysis
produces a prediction score of 83% for males and 81% for females in terms of Area Under
the Receiver Operating Characteristic Curve (ROC-AUC).
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CHAPTER 1
Introduction

Arthritis is the leading cause of morbidity and disability in developing and developed
countries [1]. Arthritis denotes acute or chronic joint inflammation possibly due to
genetics, infections, abnormal mineral crystals deposition, and injuries [2]. Treating
different forms of arthritis involves high socioeconomic costs. For example, in 2014
arthritis costed the United States $802 billion compared to $182 in 1996, which represents
almost 5% of their GDP (c.f. Figure 1.1). osteoarthritis (OA) is by far the most common
form of arthritis which causes disabilty and reduction of quality of life [3].

1.1 Problem Statement
While the exact causes and the initiation and evolution of biological processes of the
disease are still a matter of debate ([4]), it is known that the increasing obesity and age
in a population, unequal feet length and jobs that involve high levels of joint stress, are
directly linked to a massive rise in OA-related costs and morbidity [1, 5]. This leads
to the conclusion that generally OA begins with cartilage loss due to abnormal loads.
OA can generally affect any joint, but the incidence at the weight-bearing joints (the
hips and the knees) is most common. Even though the prevalence of OA is higher in the
21st centry due to older population and increasing obesity, the disease is not a modern
burden of the society. Given that the bone tissue is not easily degradable over time, OA
is one of the best documented diseases. Signs of OA in animal bones have been traced to
as early as 100 million years in the past in the fossils of two dinosaurs. The researchers
have concluded that the general characteristics of the disease have consequently remained
unchanged even though the hosts have evolved [6]. There are studies that argue that OA
‘appears to be a solid immutable part of life which is oblivious to all evolution’ [7, p. 173].

OA is characterized by cartilage loss, subchondral bone changes, synovial inflammation
and meniscus degeneration [8]. The measures taken against end-stage OA mostly involve
full joint replacement. Non-surgical treatments only show limited success due to their
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1. Introduction

delayed start when the joint structure degeneration is advanced. OA patients only begin
to experience symptoms like i.e. joint pain and stiffness at a late stage of OA when
curative or palliative treatments are inefficient. This is due to the fact that the cartilage
tissue does not have any nerves that could sense mechanic modifications as opposed to the
bone that reacts to damage. The patient experiences symptoms only when the damage
extends deeper into the bone. At this stage, a high volume of cartilage had already
degenerated. OA typically becomes clinical/radiographic OA (bone cysts formation,
osteophyte formation, nonuniform joint space loss, and subchondral sclerosis) only many
years after its onset. It is thought that this long window of time could be used to alter
its course if early changes could be successfully detected [1]. Thus, common palliative
treatments of the late disease that are used today could be replaced by prevention
treatments that reduce OA risk overall.

Figure 1.1: Arthritis costs in the U.S. between 1996-2014. Source: [9].

Early OA detection is thus important and no accurate, reliable solution is known. There
is no widely-accepted definition for early OA. Histologically, early OA is defined by
the Osteoarthritis Research Society International (OARSI) scoring system as having a
grade between 1.0 - 3.0. This represents the depth of degradation into articular cartilage
[10]. However, studies have shown that early signs of OA can be seen in the trabecular
bone (TB) of the knee, years before any cartilage degradation is detectable [11, 12].
In fact, the subchondral bone as a whole appears to play an important role in OA
development, especially in the initiation phase. Bone remodelling is found to occur at this
site particularly in early OA [13]. This change immediately leads to a reduced capability
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1.2. Aim of the Work

of the subchondral plate to absorb and dissipate energy [14], which in turn leads to
increased forces that act on the remaining elements of the joint: articular cartilage,
tendons, ligaments, menisci, and bursae. In other words, the other joint structures must
compensate for the loss of resistance of the bone.

OA is routinely assessed by imaging tests possibly in combination with lab tests [15].
X-ray images show a reduction in joint space, which translates to loss of cartilage as this
softer tissue is not directly visible by this modality. Bone spurs at the bone extremities
are also discovered in radiographs. Even at this stage, patients do not always experience
characteristic symptoms like pain, joint stiffness, swelling, redness, and reduction of
motion range. MRI is used to also image the cartilage and other softer tissues of the joint
in more complex cases. Some earlier abnormalities of OA can also be detected by this
modality. Joint fluid aspiration is sometimes performed at the presumably affected joint
by which the doctor can determine if there is an inflammation and if the discomfort is
caused by gout or an infection. Blood tests can be employed in addition to the methods
described above. Even though there exist no blood test specifically engineered to detect
OA, certain diseases with specific blood markers can be excluded from the doctors’
hypotheses.

1.2 Aim of the Work

Since the currently standardized methods described above for detecting OA are not
able to assess early changes in the subchondral bone, and given the reduced costs and
popularity of 2D radiographs, we attempt to implement and test four texture algorithms
that could be suitable for a detection of early OA signs in the knee TB using only
X-ray images. Given the fractal properties of the TB [16], two fractal-based algorithms
that attempt to characterize the complexity of the underlying 3D structure of the bone
are presented [17, 18]. The third algorithm, based on Shannon’s Entropy, stems from
information theory and aims to describe the bone structure in terms of information
complexity. The last algorithm is based on the co-occurrence matrix of an image and
describes the texture in terms of Haralick features [19].

The algorithms will be tested on two data sets with different acquisition parameters
(pixel spacing, exposure, machine manufacturer) to find their independent capacity of
discriminating between OA and non-OA patients. One of the two datasets presents
a longitudinal study, which enables us to investigate whether the algorithms are also
able to predict OA. The influence of the said imaging parameters and also of other
confounding variables such as sex, age, and body mass index (BMI) is also tested at this
step and eliminated from the features if it is too large. We want to produce features
that only characterize the texture and do not hold any other intrinsic information. Each
algorithm computes different texture features that will be investigated regarding their
discrimination and prediction power. We want to build Artificial Intelligence (AI) models
based on the best-scoring features to show that simple models can be obtained to deal
with future data. Moreover, the possibility to track subchondral bone remodeling over

3



1. Introduction

the years is also investigated within the longitudinal study. Provided that this is possible,
the result will be a proof that the detection of OA in its early stages may be possible.

1.3 State of the Art

An attempt from literature to predict the onset of knee OA was made by Janvier et al.
[20]. Using a logistic regression model with texture parameters and BMI, age and gender
combined, they are able to predict the Kellgren-Lawrence grade (KL) scores (i.e. the OA
incidence) at a 48-month follow up with an accuracy of 69% in terms of Area Under the
Receiver Operating Characteristic Curve (ROC-AUC).

In another attempt, Kraus et al. obtained a classification score of 79% in terms of Area
Under the Receiver Operating Characteristic Curve (ROC-AUC) [21]. In their model
they combined fractal signature features (texture features) at baseline, knee alignment,
traditional covariates, and bone mineral content to predict the Joint Space Narrowing
(JSN) grade over a three-year period.

Woloszynski et al. use roughness, degree of anisotropy, and direction of anisotropy based
on a signature dissimilarity measure method [22]. They manage to predict the JSN grade
with a score of 75% in terms of ROC-AUC over a 3-year period.

In this work we attempt to surpass the scores obtained in previous publications. To
achieve this, we enhance our models by taking into consideration a longitudinal study
with three visits.

1.4 Methodological Approach

First, background information about OA progression (from a biological point of view)
and diagnosis is gathered that serves a better understanding of the phenomenon and
implicitly of the need for early detection. A suitable programming language is also chosen
at the beginning depending on the available libraries that aid the implementation of the
algorithms and libraries. They should offer proper validation and result quantification
tools for unsupervised/supervised learning and model building, feature selection and
statistical tests.

Second, suitable data sets are chosen. Sets of images with different imaging parameters
and balanced instances are selected.

Third, the algorithms that are not already available (BEV, BCV) are investigated,
implemented and validated using test images with known theoretical parameters. The
BVV algorithm has been previously introduced and presented [23] and BSV is an
algorithm currently used in our company (Image Biopsy Lab G.m.b.H. (IB Lab)) in
different research areas. The last two approaches are also validated using artificially
generated fractal images (isotropic and an-isotropic) with known fractal dimensions.

4



1.5. Structure of the Work

Fourth, features for regions of interest (ROIs) of the selected data sets are extracted using
the proposed algorithms and a feature selection is employed to detect the significance
of each feature for each data set. These features will then be used not only to test the
discrimination power of the algorithms between OA and non-OA subjects with statistical
tests and neural models, but also to inspect the capability of tracking the subchondral
bone remodeling that takes place during OA progression.

1.5 Structure of the Work
The following Chapter 2 discusses related approaches that generally attempt to assess
early OA. Not only related texture algorithms are presented, but completely novel ideas
like for example blood serum tests are also presented and shortly discussed.

Chapter 3 introduces the reader to the anatomical basics of the human (long) bones
by analyzing their whole complex microarchitecture. Also possible causes and general
pathophysiology of OA are presented.

In Chapter 4 the chosen data sets and their properties are introduced. Depending on
the data available from each set, the experiment tasks with their corresponding research
hypotheses are defined. Based on these tasks, selection criteria are introduced to build
groups of patients suitable for the testing of the defined hypotheses.

Chapter 5 describes all the used algorithms in detail from a mathematical point of view.
The discussed algorithms will also be validated in Chapter 6 by using synthetic surfaces
with known theoretical parameters. The calculated parameters by the algorithms will be
compared with the theoretical ones to investigate how well the algorithms approximate
the theoretical parameters of the artificial surfaces.

In Chapter 7 all the statistical models that are used for feature interpretation and model
building are described in detail. From statistical tests that assess differences between
samples of data to Random Forests to simple linear Support Vector Machines (SVMs),
all the used methods that are employed to detect the most significant features capable of
separating OA from non-OA, of predicting OA, or of tracking the changes due to the
disease, are presented and analyzed in detail.

In Chapter 9 the results obtained are presented and the influence of the machine
parameters are investigated and if needed removed. The most significant features per
task will be discussed and the classification scores interpreted.

Chapter 10 presents a summary of the presented work. The most important findings and
their meaning are reiterated.

The last Chapter 11 describes ideas of how the present work can be not only improved
but also extended. In other words, we shortly discuss the applicability of the investigated
algorithms to other use cases.
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CHAPTER 2
Related Work

Before we describe our attempts at detecting OA we first take a look at other approaches
in the literature that pursue the same goal. The following methods cover a wide spectrum
of different approaches that tackle the problem of early detection of OA. We shortly
introduce works that employ other texture-based methods to achieve the same result.
We also present completely other approaches based on different imaging modalities, such
as for example MRI, that are used to find early micro lesions in the knee joint. Also, we
show how plasma and synovial fluid analysis is used for OA-specific marker detection.
In other words, the scientists employ a variety of methods and techniques that at some
point could become a standard in the efficient prevention of OA.

2.1 Lesion Detection from MRI Data

Sharma et al. attempt to isolate different bone lesions, such as cartilage damage, bone
marrow lesions, and meniscal damage, in patients that at the point of the experiment
had not shown classic signs and symptomps of radiographic OA, i.e. a KL of 0 in both
knees [24]. However, only samples of subjects at high risk of developing OA were selected
for this study. The lesions were assessed using the MRI OA knee score (MOAKS) by
experts on MRI volumes [25]. Prevalent frequent knee symptoms, incident persistent
symptoms, and incident cartilage damage were also assessed from 12-month, 48-month,
and 60-month follow-ups. The detected lesions were then found to be strongly correlated
(p-values < 0.005) with the symptomatic outcomes. This leads to the conclusion that
the lesions are not ‘incidental and may represent early disease in persons at increased
risk of knee OA’ [24, p. 1811].

7



2. Related Work

2.2 Synovial Fluid and Blood Serum Tests
In a completely other kind of approach Ahmed et al. attempt to detect early signs of
OA by analysing plasma and the synovial fluid of patients [26]. They detected specific
oxidized, nitrated, and glycated proteins and aminoacids that form due to the damaged
articular tissues using mass spectrography. Subsequently, two algorithms were used in
turn on the obtained experimental data. First, a discrimination between healthy and
diseased subjects was made and second, the ill subjects were classified as OA, rheumathoid
arthritis (RA), or non-RA. The early-stage OA sensitivity/specificity of the detection
was 0.92/0.90, which increased even further in severe and advanced OA and RA cases.

2.3 Whole-Joint Analysis from 2D Radiographs
In [27] Shamir et al. use plain 2D radiographs to extract ROIs automatically. They
achieve this by scaling down 20 pre-marked knee ROIs by a factor of 10. In a new image,
the knee is detected also by first scaling down the whole image by a factor of 10 and
then comparing 15 x 15 shifted windows in turn to each of the 20 initial ROIs in terms
of Euclidean distance. Finally the shortest distance is picked and the corresponding
downscaled window indicates the position of the knee in the initial, unscaled space. The
detected ROIs are then transformed into six other spaces: Wavelet, Fourier, Chebyshev
transforms alone, and combinations thereof, such as i.e. Wavelet after Fourier and so
on. Additionally, Zernike features, multi-scale histograms, moments of mean, skewness
and kurtosis, Tamura texture features, Haralick features, and Chebyshev statistics are
computed. In total 1470 image descriptors were obtained. Using this method, moderate
OA can be differentiated from controls with 91.5% accuracy.

2.4 Gabor Filters and GLRLM Features
Boniatis et al. employ Gabor filters in combination with grey level run length matrix
(GLRLM) features to detect organized structures in the ROIs extracted from hip bones
[28]. They propose a two-step classification: first, OA and non-OA hips are separated
and second, the OA hips are classified regarding the severity of the disease. They reach a
discrimination accuracy between mild/moderate and severe osteoarthritic hips of 95.7%,
which suggests that their methods could be sensitive even to smaller structural changes.
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CHAPTER 3
Osteoarthritis (OA) Background

We motivate our determination to pursue the development of an automated decision
support system for OA prediction and detection by looking at the anatomy of human long
bones and by analysing the pathophysiology of OA. Understanding the micro architecture
of bones is crucial to discover causes for bone failure and degeneration. At the same time,
the understanding of the gradual progression of OA is key to identifying useful features
that can be extracted from the radiographs and used for training of an AI model that
could serve as an automated early prediction system.

3.1 Human Long Bones

Humans are born with around 305 bones in the body that confer six major functions:
posture, mobility, protection, blood cells production, storage of minerals, and regulation
of some endocrine systems. This number is later reduced to around 205 in adult humans
due to the fusion of some parts during growth [29]. The peak bone density is reached
at around the age of 21 years in a healthy individual. One can differentiate five types
of bones in the human skeleton: long, such as femur and tibia, short, such as the finger
bones, flat such as the scapula and the sternum, irregular, such as the vertebral bones
and sesamoid bones that act as interfaces for tendons to transfer muscular forces more
efficiently [30]).

While any joint in the body can can be affected by OA, the focus of this thesis are
the long bones that form the knee articulation and that support the highest loads and
thus are more prone to failure. Bones are extremely complex organs whose mechanical
properties can not be fully understood if one does not consider their whole hierarchical
structure. Up to seven architecture levels can be distinguished in human bones generally.
We will now shortly consider each level [31].
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3. Osteoarthritis (OA) Background

3.1.1 Level 1 - Whole Bone

In the meter range, the long bones consist of two epiphyses (ends or ‘heads’) and a
diaphysis that connects them (as seen in Figure 3.1). The epiphyses are coated with
so-called hyaline (articular) cartilage. This cartilage sits in synovial fluid secreted by
the synovial membrane which, serves for lubrication and as a source of nutrients for the
joint elements. The role of the cartilaginous space is to transmit joint loads from one
bone to another one efficiently, with a very low friction coefficient of around 0.001 [32].
In comparison, in case of a hip replacement for example, a metal-plastic combination
achieves a friction coefficient of only 0.04 in best case scenarios [33].

Human bones are vascularized and innervated. The arterioles bring nutrients into
the tissue, while nerves sense damage and are the pathways for the initiation of bone
remodelling by communicating with the brain. The human bones are metabolically active
tissues. They have the capacities to adapt their structure to loads over time and to repair
themselves in case of aging or damage [34].

Figure 3.1: Example of human long Bone: tibia [35].
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3.1.2 Level 2 - Cortical and TB

In the centimeter-micrometer range one can distinguish between two types of bone mass
arrangements: cortical and TB. The cortical bone coats the entire bone providing shape,
stability, and fracture resistance, while the TB is generally situated at the ends of long
bones (some irregular bones make exceptions) as seen in Figure 3.2.

The bulky epiphyses that we introduced in Section 3.1.1 can manage stress efficiently
through their larger surface area. The TB which lies inside the epiphyses improves this
further through their special ’spongious’ arrangement that facilitates stress dissipation.
In this manner the joint loads are efficiently transfered to the midshaft of long bones and
to the next joint while avoiding high stress concentrations (as shown in Figure 3.3).

The cortical bone and the TB are principally distinguished by their porosity, bone-volume-
to-total-volume ratio (relative volume), and by the internal surface area (Figure 3.1).

Figure 3.2: Cross-section of a long bone [36].
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Figure 3.3: Stress dissipation in long bones. Reproduced with permission [37].

Table 3.1: Trabecular and cortical bone morphology [31].

3.1.3 Level 3 - Cortical and TB Microstructure

In the next level we can find the osteons, the trabecular packets, and the lamellae (as
shown in Figure 3.4). The osteons are cylindrical structures composed of concentric
lamellae. Inside the osteons, blood, lymphatic vessels, and nerve axons reside. Inbetween
lamellae, lacunae filled with osteocytes can be found. Cement lines border osteons and
contain minerals and non-collagenous proteins (NCPs), but less than the osteons [38].

The trabecular packets can be seen in Figure 3.4b. They are also composed of lamellae
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bordered by cement lines. A mineralisation gradient can be observed in this case: the
core of the trabecula is denser while its shell is thinner. The reason for this is unknown
at the point of writing this work.

As mentioned before, the bone is a metabolically active tissue. The centers of metabolism
in bones are the different bone cells (osteoblasts, osteocytes and osteoclasts) and are also
found at this level in the hierarchy.

Osteoblasts are created after mesenchymal stem cells differentiate into them. The role of
osteoblasts is to synthesize the organic components needed for the bone matrix. The so
called ‘bone lining cells’ that cover the entire bone matrix are also osteoblasts, but in a
dormant state, ready to generate new bone matrix if required.

Once the osteoblasts become completely trapped by their products, they turn into
osteocytes and serve as mechanosensors to detect damage and to initiate remodelling. It
is unclear how these cells are capable to sense damage, but two hypotheses exist. The
damage is thought to be sensed based on:

1. cilia found on the cell membrane, which increase fluid flow due to microcracks.

2. strain amplification on the surface of the cell due to cracks and other voids caused
by them.

The osteocytes also detect the absence of cracks or loading and as a consequence will
reduce the amount of bone in that specific region. The osteoclasts are derived from
hematopoietic stem cells and are large and multinucleated. They secret lysosomal enzymes
that resorb bone tissue. If the osteocytes detect damage in the bone, they initiate the
so-called ‘ARF Sequence’ : Activation, Resorption, and Formation. First, the osteocytes
send a signal that activates the creation of osteoclasts. The osteoclasts resorb the affected
tissue and consequently, the ‘dormant’ bone lining osteoblasts begin to reconstruct the
missing bone matrix, cementing themselves in the process and becoming new osteocytes
(as shown in Figure 3.5).
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(a) Cortical bone osteons [39].

(b) Trabecular packet with lamellae and cement lines. The numbers represent the average mineral
content. Lower values indicate newer formation [40].

Figure 3.4: Bone micro structure.
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Figure 3.5: Bone repair ARF Sequence: Activation, Resorption and Formation [31].
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3.1.4 Level 4 - Lamellar/Sublamellar Bone

The osteons are composed of bundles of collagen fibrils disposed differently (as seen
in Figure 3.6). Depending on the loads on the bone, different spatial arrangements of
collagen fibrils confer protection against strains. For example the twisted plywood osteon
is efficient at resisting shear strains and not only transverse or longitudinal ones like the
orthogonal osteons. The morphology of these osteons depend on the site and function of
the specific bone they are part of.

Figure 3.6: Osteon types. (a) Orthogonal. (b) Twisted plywood. (c) Plywood. [41].

3.1.5 Level 5,6,7 - Collagen Fibrils, Minerals, NCPs

Bone tissue is composed of organic elements, inorganic elements, and water. Among
the organic materials one finds collagen type I, NCPs, proteoglycans and lipids, and
other forms of collagen, whose presence facilitate the formation of functional collagen
type I bonds. On the other hand, the inorganic materials (minerals) are mainly the
hydroxiapatite crystals and magnesium, sodium, potassium and other.

Generally, the collagen takes the form of small, cylindrical fibers, called fibrils, due to
self-assembly processes that involve ionic, Van-der-Waals, and hydrogen interactions.
They can reach 500 nanometers in diameter and tens of micrometers in length. They
form bundles and in order to be able to fill the whole space, they also assume different
diameters.

The collagen fibrils are embedded in minerals, which are held in place by NCPs (see
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Figure 3.7). NCPs are also found in the interosteonal or interlamellar cement lines. The
minerals and NCPs are important micro-mechanical modulators that can deflect cracks
in healthy bones (as seen in Figure 3.8).

Figure 3.7: Fracture surface of trabecular bovine bone exhibiting collagen fibrils coated
with minerals. Minerals are also found intra-fibrillar [42].

Figure 3.8: Crack propagation paths differ between young and elderly bones [43].

3.2 OA Pathophysiology

In Section 3.1 we presented the basics of human bone anatomy, which are needed to
understand how OA develops and progresses. The pathophysiology of OA in general is
discussed in this section.

The bone-cartilage-synovial fluid-cartilage-bone complex can be regarded as a continuum,
whitout which movement would not be possible. Its structures however are organized
differently depending on the body location and function. Since the focus of this work
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is the knee OA, we will look closely at how OA develops in the knee joint. Six dif-
ferent basic structures can be observed within this joint [44] (as seen in Figure 3.9):

1. ligaments — passive elastic structures that resist tension

2. musculotendinous units — active elastic structures that act under tension

3. cartilage — passive elastic structure

4. subchondral bone — passive structure that together with the cartilage supports
the compressive loads in the joint

5. medial and lateral menisci — passive fibrocartilaginous structures that resist tension
and torsion

6. bursae — passive structures filled with synovial fluid that act as a buffer between
tendons and bones or between muscles and bones to reduce friction and ensure free
movement.

Figure 3.9: Knee parasagittal section [45].
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3.2.1 Cartilage Degradation

Osteoarthritis is a disease that affects all joint structures to some extent, but mainly
the cartilage [46]. The articular cartilage degenerates gradually, while subchondral bone
sclerosis, osteophytes, and synovial inflammation will most certainly occur (as seen
in Figure 3.10). A hypothetical model for initiation and perpetuation of OA can be
seen in Figure 3.11. However, all models agree on the fact that there is a combination
of risk factors and ageing that lead to the initiation of OA. While OA is not only a
degenerative disease that occurs as a result of gradual wear and tear, one can differentiate
two mechanisms that lead to abnormal remodelling of joint structures and finally to OA
[44].

The first mechanism involves normal loads on abnormal cartilage. A cartilage can become
’abnormal’ due to ageing or injuries. At the same time genetic factors can play an
important role in disrupting chondrocyte (cartilage cell) differentiation and thus be
responsible for abnormal mechanics [8]. This mechanism is usually the cause of OA in
younger people due to repeated joint traumas.

The second mechanism involves abnormal loads on normal cartilage. This is the case of
subjects with high BMI or different skeleton deformities (varus and valgus).

The two mechanisms can be differentiated however only in the early phases of OA. As
OA progresses a combination of the two mechanisms appears that leads to a massive
degeneration of the joint. For example the process can begin due to processes of the
second mechanism, meaning that the subject has a high BMI, but healthy cartilage.
Through the years, as the high loads affect the joint, the cartilage can become abnormal
and the disease advances much faster from this point.

In healthy patients the homeostasis of the articular cartilage is controlled by chondroblasts
and chondrocytes. The chondroblasts secrete the structural matrix that consists of
collagen and proteoglycans. At some point they surround themselves completely with
matrix and become trapped in lacunae. From this point they are called chondrocytes and
can not migrate anymore. Since the cartilage is not supplied with blood, the nutrition is
completely dependant on diffusion processes through the matrix. This is a slow process
meaning that damaged cartilage has reduced healing capabilities as opposed to the bone
tissue [30].

OA has been characterized in many studies by a disturbed/delayed repair process of
damaged cartilage due to biochemical and biomechanical changes in the joint [47]. In
patients with OA the chondrocytes can not synthesise as much matrix as is destroyed
[48]. This eventually leads to a complete loss of articular cartilage and because it is
aneural, the patient does not experience any symptoms related to its absence until the
damage extends deeper into the subchondral bone.
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Figure 3.10: Radiographic manifestations of OA. Joint space narrowing (blue), osteophytes
(yellow), bone cysts (green) and sclerosis (red) visible [44].
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Figure 3.11: OA initiation and perpetuation hypothetical model. KS stands for keratan
sulphate [44].
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3.2.2 Subchondral Bone Changes

Distal to the articular cartilage lies the subchondral bone. This is composed of epiphyseal
cortical bone and spongy bone, i.e. the TB. The subchondral bone provides support,
absorbs shocks, and supplies the joint with nutrients. The surface of the subchondral
cortical bone is less stiff than the diaphyseal cortical bone for more efficient nutrient
transport out of the bone matrix [44]. It is not yet known with certainty if subchondral
bone is altered before the most popular sign of OA, which is cartilage loss, but recent
animal studies suggest that a certain degree of microstructural reformation is possible
years before cartilage damage occurs [13]. The human bones were shown to indicate
similar changes prior to the actual cartilage loss [11, 49].

Early OA sees an increase in subchondral bone remodelling rate and porosity for yet
unknown reasons, leading to reduced thickness of the subchondral plate [13]. However
some theories for this exist:

1. Interleukin 1 and 6 have been detected in abnormal amounts in deteriorating
cartilage [13]. They are inflammation mediators and at the same time stimulants
of bone remodeling.

2. It is known that early OA produces changes in the microarchitecture of the capillaries
within the subchondral bone [50]. This vascular invasion can penetrate deep into
the articular cartilage producing catabolic enzymes, which degenerate the cartilage.
This produces a feedback loop with the subchondral bone, which needs to adapt in
order to support the same loads without the same volume of cartilage present as
before [13].

3. Burr et al. showed [13] by in vitro studies that there is a cross-talk between bone
cells and cartilage cells due to micro-cracks in the subchondral plate. This false
signaling may lead to increased bone resorption and consequently remodeling.

With the progression of the disease, the remodelling rate decreases, but overall there is
an imbalance of resorption and bone formation leading to a net increase in bone volume
and density [51]. This phenomenon is known as bone sclerosis and is detected as a
condensation in radiographies (as seen in Figure 3.10) due to thicker bones. It is thought
that the newly-formed bone is less mineralized, which leads to a reduced mechanical
stiffness and consequently to the deterioration of the articular cartilage [13].

In the early stage of OA, osteophytes can also develop, which are outgrowths of osseus
tissue covered in cartilage. They usually form at the docking places of tendons or
ligaments (traction spurs) and their role is not fully understood. However there are
studies that have found that limb osteophytes may be helpful in the stabilisation of
the joint [52]. There exist also inflammation spurs, which usually occur between the
vertebrae, but are also painful.
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3.3 Radiographic Imaging
As stated in Chapter 1, OA is routinely assessed based on X-ray images. This technique
’remains the most accessible tool in the evaluation of the OA joint’ [53, p. 1]. In
radiography, electromagnetic radiation, also called Röntgen radiation, with wavelengths
that range from 0.01 to 10 nanometers, are projected towards an object from an X-ray
generator. The generator consists of a cathode, an anode, and a vacuum tube. The
cathode directs a high-speed stream of electrons towards the anode, which is made out
of tungsten for better heat dissipation. After the collision, 1% of the energy is released
as X-rays and 99% as heat. These resulted rays are then projected through an object in
order to visualize its internal structure. This is achieved due to the fact that the target
object absorbs a certain amount of the X-rays depending on its composition. The energy
that passes through is measured with a detector at the other end, which is a photographic
film or a digital detector.

For the assessment of OA, the knee joint is generally imaged in an extended state, with
joint-perpendicular X-rays and with the patient standing exerting full pressure on the
joint (also called weight-bearing position). However, in order to improve intra-articular
visualization, the knee joint can be flexed by various degrees. At the same time the X-rays’
projection angle can be adapted. The grading of OA is done by evaluating osteophyte
formation, JSN and other factors using predefined grading schemes such as KL [54] or
OARSI [55]. An example of an X-ray image from a patient with osteophytes and reduced
JSN is shown in Figure 3.12.
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Figure 3.12: A) Antero-posterior weight-bearing radiographs of a patient with JSN and
osteophyte formation consistent with bilateral medial osteoarthritis of the knee. B) A
magnified view of the right knee joint. The arrow denotes medial JSN. Osteophyte
formation can be seen on the femur and tibia [53].
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CHAPTER 4
Data Sets and Hypotheses

Definition

In this Chapter we introduce the real image data sets that we use to test our texture
algorithms presented in Chapter 5. At this point we will also provide details on the
planned tasks that should be solved by the AI models defined in Chapter 8. The tasks
are formulated based on the structure of the data, which is specific to each data set. One
of the data sets is a longitudinal study and therefore enables us to formulate research
questions related to the development of the disease. Within each task we formulate
appropriate study hypotheses, which we test for validity with statistical methods that
are presented in Chapter 7.

In Chapter 3 we have shown that the subchondral regions of the tibia show structural
changes during the OA development. Therefore, we assume that these regions may produce
significant features that could be used for prediction and detection of OA. In a previous
study this theory was confirmed and it was shown that the regions below the tibia plateau
produced the most significant features for OA prediction [56]. The selection of ROIs from
the X-Ray that will be used for feature extraction and analysis is done automatically using
the IB Lab Analyzer Software developed at IB Lab (https://imagebiopsylab.com).
The ROIs are positioned relative to the two landmarks MED (marking the medial tibial
bone condyle) and LAT (marking the lateral tibial bone condyle, i.e. the side where the
fibula is located) that are detected by deep learning means. An example of landmark
placement is shown in Figure 4.1. This relative positioning of the ROIs can be viewed
as a registration technique to assure that the ROIs are placed at roughly the same
positions for the same patient across several visits. The software provides the possibility
to automatically assess the OA grading based on the KL score by evaluating the joint
space width, the presence of osteophytes and sclerosis. The marked ROIs can be used
for in-place feature engineering using some built-in algorithms (currently BSV and BEV
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are implemented) or can be extracted with a view of being assessed externally by other
algorithms as well, which is the case of BCV and BVV.

Figure 4.1: The different ROIs detected by the IB Lab Analyzer Software. The naming
convention is as follows: R stands for region, M stands for medial, L stands for lateral
and F stands for femur.

4.1 Portugal (EpiReumaPt)
The EpiReumaPt study started in September 2011 (and lasted until December 2013) in
Portugal out of the lack of well-designed and consistent epidemiologic studies previously
available in the country [57]. With this study, the Portuguese Society of Rheumatology
(SPR) wanted to fulfill their mission of increasing knowledge and raising awareness about
the Rheumatic and musculoskeletal diseases (RMDs) in Portugal.

Among the main aims of the EpiReumaPt are to estimate the prevalence of:

1. hand, knee and, hip OA,

2. low back pain (LBP),

3. RA,

4. fibromyalgia, and
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5. osteoporosis (OP).

in the adult Portuguese population. The secondary aims were to determine the impacts
of the diseases on the quality of life (such as general well-being, mental health, work
status, etc.).

The study target population was composed of non-institutionalized adults and consisted
of three phases. In the first phase, each participant was verbally interviewed at his or her
house about any possible symptoms due to RMDs, using standardized questionnaires. In
the second phase, the participants were observed in a clinic by three radiologists which
set a diagnosis and also requested laboratorial tests and different types of image data
from each participant, again, following standardized procedures defined previously by
the study designers for each disease that was observed. In the third and last phase, the
diagnosis set in the second phase were validated using the laboratory results and the
images (dual-energy X-ray absorptiometry (DXA) and X-ray modalities). The knee OA
was assessed using the ACR criteria [58].

Our goal concerning the Portugal data set was to test whether the algorithms introduced
in Chapter 5 can engineer useful features that could aid in the control-case discrimination
task regarding OA. For this, out of the 930 patient knee X-Rays that we had access
to, we selected a representative sample of patients for which the certain diagnostic, the
X-Ray tube voltage (measured in kV), the exposure (measured in mAs), the ethnicity,
the age, and the BMI were available. Thus, we selected 171 white women, which are
divided in two groups: 86 cases and 85 controls (as shown in Table 4.1). These persons
had X-rays recorded at 65 kV. This selection was made to ensure uniform data for the
upcoming analyses. The resolution of the Portugal images is 1944 x 3072 pixels, while
the pixel spacing is 0.075 micrometer. The number of allocated bits for the displaying of
intensities is 16, but only 14 are used.

Table 4.1: Number of controls and cases available in the Portugal data set for model
building.

group case control
number 86 85

The BMI, voltage, exposure, and age were used to verify their effect on the texture
features, as we do not want contributions from any confounding variables. The influences
of the confounding variables and the process of removing them will be discussed in more
detail in Chapter 9.

For the experiment using this image set all the ROIs (RM1, RM2, RL1, RL2, RMF,
RLF) were used. This yielded a total of 126 features: 21 features per ROI. The means
for obtaining these features are presented in detail in Chapter 5. We formulated the
following hypothesis that we later attempt to invalidate using statistical tests:
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There is no significant difference between the means of the OA and non-OA groups in
terms of entropy, fractal dimension, and Haralick features.

4.2 MOST
As opposed to the EpiReumaPt study, which targeted a larger number of diseases (see
Section 4.1), the MOST study focused solely on knee OA. The MOST is a longitudinal,
prospective and observational study funded by the National Institute on Aging in the
United States [59]. The main goal of the study was to determine possible new or modifiable
risk factors (that could help prevent the development of the disease) for radiographic
and symptomatic OA and to verify whether the risk factors of a newly-developed OA
differ from the ones of an OA at a more advanced stage. In total, 3026 men and women
with preexisting knee OA or at high risk of developing OA were recruited.

MOST completed a baseline (where risk factor screening was carried out) and five follow-
up contacts at 15, 30, 60, 72, and 84 months. At each time point, clinical assessments
were conducted and radiological data (DXA, X-ray, and MRI of both feet) were collected
following standardized procedures. Also other measures like for example the KL) were
recorded. The 72-month visit did not generate interesting data for our purposes, as it
was a telephone interview only. Our goal with the MOST data set was to test whether
the features that our algorithms engineer are suitable for:

1. discriminating OA from non-OA patients,

2. predicting knee OA and

3. tracking the progression of knee OA

based on only 2D X-Rays of knees. To achieve this, for each task we created different
study groups that we selected from the large pool of participants based on different
criteria that would fit the goal of each task in turn. For our experiment we focused on
the baseline (BL), 30 months (30m) and 84 months (84m) visits only. We carried out the
same experiments for men and females separately, i.e. in a gender-stratified fashion. We
limit our study to the three mentioned time points in order to assure the largest time
intervals possible between the visits. This leads to more detectable differences among
the time points for the OA cases. Our study design thus led to the formulation of eight
general hypotheses that we hope to invalidate through statistical tests, based on the
three tasks enumerated above:

1. OA discrimination task:

a) The cases’ trabecular structure does not differ significantly from the controls’
in terms of entropy, fractal dimension (FD), and Haralick features for the
male group.
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b) The cases’ trabecular structure does not differ significantly from the controls’
in terms of entropy, FD, and Haralick features for the female group.

2. OA early prediction task:

a) There is no significant difference between the measurements recorded for healthy
patients at BL and measurements recorded for the same patients at 30m or
84m if they developed OA, in terms of entropy, fractal dimension, and Haralick
features for the male group.

b) There is no significant difference between the measurements recorded for healthy
patients at BL and measurements recorded for the same patients at 30m or
84m if they developed OA, in terms of entropy, fractal dimension, and Haralick
features for the female group.

3. OA progression task:

a) There is a significant difference between patients that indicated constant KL
scores across visits in terms of entropy, fractal dimension, and Haralick features
both for:
i. males
ii. females

b) There is no significant difference between visits of patients whose KL grade
worsened in terms of entropy, fractal dimension, and Haralick features both
for:
i. males
ii. females

For the experiment using the MOST image set, all ROIs (RM1, RM2, RL1, RL2,
RMF, RLF) were used. We were interested in discovering which ROI shows the largest
contribution to the detection of the disease in the texture. This yielded a total of 126
features (21 texture features per ROI). The methods for obtaining these features are
presented in detail in Chapter 5. Only images recorded with constant voltage, exposure,
known BMI, and age were used for all the tasks. We used Computed Radiography (CR)
images only, all taken with the same machine (AGFA Adc Solo with a pixel spacing
of 0.1699), obtained from the center at Birmingham, AL in order to avoid eventual
digitization, and image-stitching/manipulation artifacts.

The resolution of the MOST images is 2530 x 2048 pixels, while the pixel spacing is
0.17 micrometer. The number of allocated bits for the displaying of intensities is 16, but
only 12 are used. The X-rays were recorded for each patient at each visit for both knees.
The KL labeling of the data is available for both knees. In our experiment, we always
extracted the features from the left knees for the patients that were controls and we
extracted the features from the knee labeled as ill for the patients that were classified as
cases.
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4.2.1 Diagnosis

For diagnostic purposes we treated each visit separately to investigate where the discrimi-
nation is better. The general selection criteria for the control groups were KLt == 0 and
KLt>BL == 0 (i.e. the patients were healthy throughout the study) and for the case
groups were KLt > 1, where t ∈ {BL, 30m, 84m}. Thus, for BL we had 189 controls and
138 cases in the female group and 265 controls and 217 cases in the male group. At 30m,
59 controls and 95 cases from the female group and 127 controls and 150 cases from the
male group were available. At visit 84m, 257 controls and 245 cases from the female
group and 294 controls and 386 cases from the male group were available. The data
presented in this paragraph is available in Table 4.2.

Table 4.2: Number of controls and cases available at each visit for the male and female
groups separately for the diagnostic task. The number of controls varies across studies
due to interrupted visits of the persons involved in the study and the selection criteria
applied on the images (in terms of exposure, voltage, etc.).

BL 30m
gender male female male female
group case control case control case control case control
number 217 265 138 189 150 127 95 59

Table 4.2: (continued)

84m
gender male female
group case control case control
number 386 294 245 257

Early Prediction

To inspect the early prediction capabilities of our algorithms, we selected as controls the
knees that remained healthy at all visits(KLBL = KL30m = KL84m = 0). The cases
group was composed of patients that at BL were healthy (KLBL = 0), but at some
later point in time developed OA (KLt>BL > 1). These criteria yielded 189 and 265
controls and 226 and 343 cases (female and male). The data presented in this paragraph
is available in Table 4.3.

Table 4.3: Number of controls and cases available at each visit for the male and female
groups separately for the early prediction task.

gender male female
group case control case control
number 343 265 226 189
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Progression

To test if our algorithms can track the disease progression, we constructed four groups of
participants:

• patients that will become ill (KLBL = 0 and (KL30m > 0 or KL84m > 0)). This
selection yielded: 273, 180 and 345 females and 457, 291, 528 males at BL, 30m
and 84m. We called this the OA-incidence group.

• patients that stay healthy throughout the study (KLBL = 0 and KL30m =
0 and KL84m = 0). This selection yielded: 189, 124 and 257 females and 265,
127, 294 males at BL, 30m and 84m. We called this the stay-healthy group.

• patients whose KL score worsened throughout the study (KL30m > KLBL or KL84m >
KLBL or KL84m > KL30m). This selection yielded: 48, 33 and 170 females and
90, 60, 267 males at BL, 30m and 84m. We called this the KL-worsening group.

• patients whose KL score remained constant throughout the study (KLBL =
KL30m = KL84m = 0). This selection yielded: 384, 241 and 410 females and
570, 290, 503 males at BL, 30m and 84m. We called this the KL-constant group.
The number of participants selected varies across the study due to inconsistent
visits and the selection criteria of the images (no stripes as in Figure 4.2, constant
exposure, constant pixel spacing, constant voltage, etc.).

4.2.2 Group Balancing

Due to the fact that the data sets that we have constructed were unbalanced, we used
the SMOTE technique to enrich the smaller groups. For example, for the diagnosis task
at 30m we had 95 cases, but only 59 controls, so we equalized the numbers [60]. This
technique assures that the newly-generated samples for the smaller group do not leave the
boundaries of the so called elliptic envelopes of the original, base groups. The main reason
for the reduced number of data are our very specific selection criteria. The secondary
reason is that after a thorough visual inspection of the images, we found a lot of images
with stripe artifacts that would have disturbed the correct application of the algorithms
(as shown in Figure 4.2). The power spectra observed are obtained after summing up
the image rows into a single 1D signal. The artifacts generally appear on such a power
spectrum as high frequency peaks (as shown in Figure 4.2c). We have detected these
peaks by convolution of the signal with wavelets of different widths. The peaks that
appear on most scales were the peaks corresponding to the stripes. All the images that
indicated such artifacts were removed from further analysis, as a consequence.
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(a) (b)

(c) (d)

Figure 4.2: Example of ROIs from X-ray images with (a) and without (b) stripe artifacts.
The power spectra of the ROI with artifacts (c) and of the ROI without artifacts (d) are
also depicted.
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CHAPTER 5
Methods

We first introduce each algorithm that we will use to analyze the presented data sets in
more detail. We attempt to trace back the origins of each algorithm in order to better
understand why they are indeed suitable for characterizing knee TB from radiographs.

First, we look at two fractal-based algorithms (Bone Score Value (BSV) [18] and Bone
Variance Value (BVV) [61]) given the fractal properties of the TB [16]. Second, an
algorithm based on Shannon Entropy, which stems from information theory, is presented:
the Bone Entropy Value (BEV) [62]. Last but not least, an algorithm that computes
different image descriptors not directly from the image histogram as the BEV algorithm,
but from the so called coocurrence matrices of the image is described (Bone Coocurrence
Value (BCV) [19]).

5.1 Fractals
Pentland raised the problem of computational representation of complex natural shapes,
such as ‘a crumpled newspaper’, ‘a clump of leaves‘ or ‘a jagged mountain’. He stated
that Plato’s notion of ideal forms (e.g., spheres, cylinders, cubes) are too ‘primitive’ to
achieve this [63]. Moreover, using only the ideal forms it would be impossible to extract
3-D information from the image of a ‘rough’ or ‘crumpled’ surface if all the available
models assume smooth surfaces. As a consequence, fractal functions have been proposed
as better generators of naturally-looking surfaces. This is due to the fact that basic
physical processes produce fractal surfaces: formation of clouds, leaves growth (see Figure
5.1), tree growth, TB (see Figure 5.2) etc. Thus, fractals are common in nature [64, 65],
with Mandelbrot showing that fractal surfaces are indeed produced by basic physical
processes that range from the aggregation of galaxies to the curdling of cheese.

In one of our previous works we have provided an extensive definition of fractals [23]. In
this work we only reiterate the basics to refresh the memory of the reader. A structure,
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a surface, or a shape is thus considered to be a fractal if it possesses a defining set of
features, called fractal properties. These properties are put together by Falconer [66]. He
states that if F is a fractal, the following properties will apply in most of the cases:

P1. F has a fine structure, i.e., detail on arbitrarily small scales.

P2. F is too irregular to be described in traditional geometrical language, both locally
and globally.

P3. Often F has some form of self-similarity, perhaps approximate or statistical.

P4. Usually the FD of F (defined in some way) is greater than its topological dimension
– D.

P5. In most cases of interest, F is defined in a very simple way, perhaps recursively.

One can thus notice that a fractal is too complex to be described by simple, traditional
Euclidean geometry. For this matter, Mandelbrot introduced the field of fractal geometry
[65], which provided not only some new insight into the intricate properties of fractals,
but also tools for analyzing and characterizing their structure. In traditional geometry
one must only apply the following generalized formula to measure some metric property
M (such as length, area, volume):

M = nrD (5.1)

where r is the ‘measuring stick’ (size of the measuring unit), D is the topological dimension
of the measuring instrument (e.g., 1 – a line, 2 – an area, 3 – a volume) and n is the
number of such units needed to ‘cover’ M completely [63, p. 663].

The importance of fractal geometry and especially of the FD becomes clear once we
present the most popular example that illustrates the need of such a dimension: measuring
the length of the coastline of an island (see Figure 5.3). The smaller we choose to be the
size of our measuring tool (can also be seen as magnification), the more of the coastline is
covered (see Figure 5.4), but there still remain regions of the coastline where it can not fit
and thus those features are missed. This means that at this point the measurment does
not depend only on the subject but also on the measuring tool. Mandelbrot stated that
in order to compensate for the length lost due to the smaller details than the measuring
unit, a fractional power (dimension) must be introduced [67]:

N ∝ r−FD (5.2)

where N is the number of non-overlapping segments of size r in which the previous
segment (measuring stick) is divided in a process of recursively ’decreasing’ the size of
the measuring stick. Rearranging Equation 5.2, which has the form of a general scaling
law, yields:

logN ∝ −FD log r. (5.3)
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And:
FD ∝ logN

log 1/r . (5.4)

Finally:
− FD log r ∝ logN. (5.5)

At this point it is clear that FD is proportional to the slope of the log-log plot of r against
N (see Equation 5.5). Indeed, if we calculate this rate of change, we obtain approximately
1.21 as the FD of the Great Britain coast line. Thus, the FD acts as an ‘adjustment’
factor for the details smaller than the chosen measuring unit that were lost; ‘it may also
be viewed as a measurement of the shape’s roughness’ [63, p. 663]. As a consequence,
for natural shapes, any description that does not contain the FD as correction factor will
not be correct at more than a single scale.

Since the FD of a surface can not be calculated directly just by applying Equation 5.4,
other approaches of approximating this value must be employed. Additionaly, given the
fact that the TB is known to feature fractal properties [16], in the next two sections, two
algorithms that calculate the FD of a surface slightly differently are presented. These
algorithms also do not calculate FD directly, but calculate a so called Hurst exponent
[68, 69], which relates to the FD as follows [70]:

FD = D + 1−H, (5.6)

where D is the topological dimension of the surface and H is the Hurst coefficient (H).
In case of 2D surfaces (radiographs of TB), Equation 5.6 becomes:

FD = 3−H. (5.7)

This means that a fractal whose FD lies between 2 and 3 is too complex to be described by
only two topological dimensions (e.g., length and width), but is not complex enough that
another ‘depth’ dimension should be added. Its complexity lies somewhere in between and
the degree of complexity is fully described by H. Given the fact that H lies between 0 and
1, a value smaller than 0.5 indicates a ‘wild’ randomness. For example, in Equation 5.7 if
H < 0.5 the FD comes closer to 3, which means that the complexity of the signal almost
reaches three dimensions. However, value bigger than 0.5 indicates a ‘mild’ randomness
of a signal. For example, in Equation 5.7 if H > 0.5 the FD stays closer to 2, meaning
that the complexity of the signal is not much higher than only two dimensions; there
is not much more information needed than two dimensions to describe the underlying
surface. The two cases can also be interpreted as ‘negative’ and ‘positive’ autocorrelation
of a signal. In case of H taking the value of exactly 0.5, there is no correlation between a
signal’s past and current state, but complete randomness is observed [71].

With this in mind, we will first present two algorithms based on slightly different
approaches that attempt to estimate the same parameter, namely the Hurst exponent.
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Figure 5.1: Fractals in nature: leaf [72]
.

Figure 5.2: Fractals in nature: human TB [73].
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Figure 5.3: Great Britain coast line measured with different measuring units [74].

Figure 5.4: Log-log plot of different magnification levels r against perimeter N [74].
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5.1.1 Bone Variance Value (BVV)

The BVV is the first fractal-based algorithm that we introduce and describe. In this case,
is is assumed that the intensity surface of an image is generated by a stochastic process,
more specific by a fractal Brownian function, which is the mathematical generalization of
the Brownian motion [61]. In 1977, Mandelbrot stated that a random function I(x) is a
fractal Brownian function if for all x and ∆x the probability Pr is given as[64]:

Pr

(
I(x+ ∆x)− I(x)

||∆x||H < y

)
= F (y), (5.8)

where F (y) is a cumulative distribution function and H is the Hurst exponent. Like for
most of the parameters of any natural phenomenon or shape, it is assumed that the
intensities of the image representing TB are drawn from a normal distribution, which
means that differences of intensities are also drawn from a normal distribution. Due to
the fact that the fractal Brownian motion is the only self-similar Gaussian process [75],
we can rearrange Equation 5.8 in the following manner [63, p. 665]:

V AR

[
I(x+ ∆x)− I(x)

||∆x||H
]

= V AR[I(x+ 1)− I(x)], (5.9)

which shows how the second-order statistics of the image change with scale. By applying
the basic property of the variance:

V AR[aX + b] = a2V AR[X], (5.10)

where X is a random variable and a a linear scaling factor and b a constant, the scaling
constant 1

||∆xH || can be extracted and Equation 5.9 becomes:

1
||∆x2H ||

V AR[I(x+ ∆x)− I(x)] = V AR[I(x+ 1)− I(x)], (5.11)

which finally leads to the statement

V AR[I(x+ ∆x)− I(x)] ∝ ||∆x2H || (5.12)

In other words, the variance of the distribution of differences is proportional (up to a
constant, which are the differences if ∆x = 1 pixel) to the chosen spatial distance or scale
∆x between the intensities, ‘corrected’ by the power 2H. By applying log to Equation
5.12 we obtain

log (V AR[∆I∆x]) ∝ 2H log (∆x) (5.13)
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which means that one can estimate the Hurst exponent H by fitting a line to the log-log
plot of variances versus differences and calculating 1/2 of the slope of it.

Equation 5.13 shows how powerful this approach of estimating H is. By varying ∆x
values, one can employ different ‘measuring sticks’ and by assigning a direction to these
units, a fractal can be described in a complex manner. This is useful due to the fact that
TB is an anisotropic structure and its properties do not only vary with direction, but
also with scale [76]. As a consequence, Wolski et al. employed a version of this variance
method where they calculate H values for 24 directions (i.e., every 7.5◦) and for six scales
along each direction (as shown in Figure5.5). This is called the Variance Orientation
Transform (VOT). However, we have decided to restrict the number of directions so that
the algorithm is applicable also for X-rays with lower resolutions. As a consequence we
limited the algorithm to calculate H values for only eight directions (i.e., every 45◦). In
reality, these directions reduce to four due to symmetry. At the same time, as opposed to
how we presented the algorithm in its first iteration [23], we discard the different scales.
In other words, we compute a single H along every mentioned direction.

We cut each beam along each direction to be five pixels long. Wolski et al. did not
consider the first four pixels due to a possible ‘digitization error’ [17, p. 213]. Also, Wolski
et al. cut off their beams at 16 pixels, making the beams 12-pixels long. By defining
beams with lengths of five pixels, we disregard the low frequencies, that correspond
to larger structures, from the calculations. We have shown that these regions have a
negative impact on the fractality of the image (as shown in Figure 5.6). In other words,
the intensities in the X-rays that we analyze appear to follow the power rule of fractals
(see Equation 5.12) only at small distances, but not over longer ranges.

This algorithm computes an approximation of H at 0◦, 45◦, 90◦ and 135◦ to account for
the fractality of the TB. A mean H is also computed. This yields a total of five BVV
features per image.
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Figure 5.5: A schematic illustration of the VOT method: (a) a search region that moves
across the image, (b) values calculated for a pair of pixels within the region, (c) a log-log
plot, (d) lines fitted to the plot, (e) a rose plot of Hurst coefficients and (f) texture
parameters calculated from the ellipse fitted [77].

Figure 5.6: Different, randomly selected ROIs from our data sets (color-coded) to show
where the ‘decoherence’ of variances of differences and scale begins. a) log-log plot of
V AR[∆I∆x] against scales ∆x. b) Power spectra of the said ROIs.
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5.1.2 Bone Score Value (BSV)

The second fractal-based algorithm that we introduce is the BSV. This algorithm is based
on the work of Lundahl [18]. In this case, the assumption that the function describing
the intensity surface of the image is a stochastic process generated by a fractal Brownian
function (fBf) must also be made. A fractal Brownian function (fBf) is governed by a
single parameter, the Hurst exponent [18, p. 152]. At the same time, the Hurst exponent
was shown to be directly related to the FD of a function, describing its ‘intuitive roughness‘
(cf. Equation 5.7) [18, p. 152]. In other words, a realization of a fractal Brownian motion
(fBm) describes a fractal set.

In this section we first take a closer look at the background of a fBm in order to understand
the approach by which the BSV algorithm is approximating the Hurst exponent.

Brownian Motion

A chaotic, random movement of particles within a medium is called a Brownian motion.
This is a physical phenomenon, which was noticed by Robert Brown in 1827 while observ-
ing the behaviour of pollen grains in a watery milieu. The mathematical formalization of
this process is called the Wiener process and is described and analyzed in much detail in
the work of Moerters and Peres [78]. The extensive information presented there is out
of the scope of this present work. However, Moerters and Peres proved a very simple
definition of such a Wiener process in their book that is clearly formulated:

Definition 5.1. A real-valued stochastic process Bt : t ∈ T ; t ≥ 0 is called a (linear)
Brownian motion with start in x ∈ R if the following hold:

• B(0) = x; if x = 0 then the process is also called a ‘standard Brownian motion’,

• the process has independent increments, i.e., for all time points 0 ≤ t1 ≤ t2 ≤
... ≤ tn the increments B(tn)− B(tn−1), B(tn−1)− B(tn−2), ..., B(t2)− B(t1) are
independent random variables,

• for all t ≥ 0 and h > 0, the increments B(t+ h)−B(t) are normally distributed
with expectation 0 and variance h,

• the function B(t) is continous.

Fractal Brownian motion (fBm)

A fBm is a generalization of the Brownian motion introduced above for enabling applica-
bility in other fields, such as probability theory. In comparison to the general Brownian
motion, the fBm is defined as follows:

Definition 5.2. A real-valued stochastic process BH(t) with t on [0, T ] is a fBm if the
following hold:
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• BH(t) is a continuous-time Gaussian process.

• its increments need not be independent.

• has expectation 0 for all t ∈ T .

• is a first-order stationary process, meaning that the process constructed from the
first-order increments X(t) = BH(t+ 1)− BH(t) are stationary. This process is
called fractal Gaussian noise (fGn).

• is a second-order non-stationary process, as shown by the variance law: V ar(BH [i]) =
σ2i2H , where i is a discrete time index [79, p. 327]

• is statistically self-similar (cf. Equation 5.1) due to the fact that the covariance
function (also autocorrelation function in this case) is a homogeneous function of
order 2H. The fBm is the only self-similar Gaussian process.

• is defined by the covariance function E[BH(t)BH(s)] = 1
2(|t|2H + |s|2H − |t− s|2H),

where t and s are two different instances in time and H is the Hurst exponent.

The Algorithm

At this point, after introducing the basic theory regarding the fBm, we can introduce the
BSV algorithm. As we have seen in the previous sections, the fBm is a Gaussian process,
whose probability density function (PDF) can be expressed as:

Pr(X) = 1√
(2π)d|Σ|

e−
1
2 (X−µ)T Σ−1(X−µ), (5.14)

where d is the number of dimensions of the multivariate process, X is the 1 x d data
vector (in our case, a row of intensities from the TB ROI) and µ is a 1 x d vector
containing all the means for each random variable in X and Σ is the d x d symmetric
positive definite covariance matrix. In the same manner, the increments of the fBm, the
fGn, also build a Gaussian process. In other words, the fGn is multivariately normally
distributed as well, whose PDF can be expressed simplified as:

P (G|H) = 1√
(2π)d|R|

e−
1
2G

TR−1G, (5.15)

where H is the Hurst exponent, G is the fGn computed from the fBm and R is the Σ from
Equation 5.14. It was renamed to point to the more special covariance (autocorrelation)
function of a fGn, which must be derived from the covariance function of a fBm in the
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following manner, by making use of the variance law introduced in Definition 5.2:

E[(BH(t+ 1)−BH(t))(BH(t+ k + 1)−BH(t+ k))] =
= E[BH(t+ 1)BH(t+ k + 1)] + E[BH(t)BH(t+ k)]
− E[BH(t+ 1)BH(t+ k)]− E[BH(t)BH(t+ k + 1)]

= σ2

2 [(|t+ 1|2H + |t+ k + 1|2H − |k|2H) + (|t|2H + |t+ k|2H − |k|2H)

− (|t+ 1|2H + |t+ k|2H − |k − 1|2H)− (|t|2H + |t+ k + 1|2H − |k + 1|2H)]

=
σ2

2
(|k+ 1|2H − 2|k|2H + |k− 1|2H)

(5.16)

Note that the mean µ is missing from Equation 5.15 due to Definition 5.2, which states
that a fBm has expectation 0 at all time points. This obviously applies to the increments,
the fGn, as well.

As we can see at this point, the covariance function of the fGn (which basically generates
the entries of R) depends on H (see Equation 5.16). In other words the PDF of the
fGn depends on H as well. We can now estimate the H by maximizing the likelihood
L(H|G) = P (G|H). In [18] it was shown that P (G|H) is unimodal, meaning that it
has a unique maximum. We do not change this maximum by applying the logarithm
to the PDF, since the log is a monotonic function. In other words we can maximize
log(P (G|H)) instead, which leads to a more simplified form:

log(P (G|H)) = −d2 log(2π)− 1
2 log|R| −

1
2G

TR−1G, (5.17)

where the elements of R are given by the autocorrelation function (cf. Equation 5.16).
At this point we notice that the variance σ2 is also unknown and must be estimated. We
can, however, get rid of it by decomposing R = σ2Rprime with the likelihood function
becoming:

log(P (G|H)) = −d2 log(2π)− 1
2 log|R

prime| − 1
2 log(σ2)− 1

2σ2G
T (Rprime)−1G (5.18)

By computing the derivative of the likelihood with respect to σ2 and letting it go to zero
we obtain an approximation for σ2, which maximizes the likelihood function:

σ̂2 = G′(Rprime)−1G

d
(5.19)

Inserting this approximation into Equation 5.18 yields the final function to be maximized
with respect to H:

log(P (G|H)) = −d2 log(2π)− 1
2 log|R

prime| − 1
2 log(G

′(Rprime)−1G

N
)− d

2 , (5.20)

where the constants can further be removed for an even simpler form.
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We observe that Equation 5.20 is not an explicit form for an estimate Ĥ as a function of
the data G. In this case, numerical methods must be employed to find the maximum
with respect to H. In this case, we used the Golden Section Search to narrow down the
possible value of H.

For each input image, the algorithm computes a vertical, a horizontal and a mean
approximation of H, yielding three features.

5.2 Information Theory and other Image Properties
As opposed to the fractal approaches introduced and presented in Section 5.1, in this
section we introduce two approaches that deal with the raw, unprocessed pixel intensities
to produce characteristic features. These features are directly related to the integrity,
homogeneity, and correlation of the structure represented by the respective intensities.

5.2.1 Bone Entropy Value (BEV)

The first algorithm that we introduce in this section stems from the field of Information
Theory and is called Shannon’s Entropy. It bears the name of Claude Shannon, who first
introduced the idea of information entropy in 1948 [62].

Information Theory

Before we can explain how the BEV algorithm works based on information entropy, we
first need to give a short and intuitive introduction to the field of Information Theory as
summarized by Carter [80]. Suppose there is an event, which occurs with probability p
and carries a certain information content or information amount. We can then intuitively
develop some rules that must apply to this information as a function I:

• Information is non-negative: I(p) ≥ 0.

• If the probability p of an event is 1, than it means that this event carries no
"surprise" or no additional information, therefore I(1) = 0. The reverse also holds
for the case if p = 0.

• If two independent events occur, then the information content of both is the sum
of the individual information contents: I(p1 ∗ p2) = I(p1) + I(p2).

• I must also be a continuous function of the probability. "Slight changes in probability
should result in slight changes in information" [80, p.16].

At this moment we observe that the only function that fulfills all of the rules specified
above is the log function! This means that:

I(p) = −logb(p), (5.21)
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where b is a placeholder for any possible base. Due to the fact that the p lies between 0
and 1 we needed to negate the log so the information content remains non-negative.

Information Entropy

With a clear definition of the information content of an event (message, byte stream,
etc.), we can now define the entropy held by that particular event.

Definition 5.3. Given a probability distribution Pr, the entropy of the distribution P is
defined by:

E(Pr) = −
∫
Pr(x)log(Pr(x)) dx. (5.22)

in case of a continuous probability distribution, or

E(Pr) = −
n∑
i=1
pilog(pi). (5.23)

in case of a discrete distribution (such as the histogram of an image for example).

In other words, we can say that the entropy of a probability distribution of an event is
the expected value of the information content of that distribution:

E(P ) = E(I(P )) (5.24)

Based on Definition 5.3, we can now introduce the definition for Shannon’s Entropy,
which is:

S(P ) = −
n∑
i=1
pilog2(pi), (5.25)

i. e., the base two logarithm was used for Equation 5.23. Due to this, the units of this
entropy are usually referred to as bits.

The Algorithm

Building on previous thoughts and definitions we can now construct an algorithm that
can describe an image in terms of its information complexity. Multiple circular masks
with given, preset radius are placed on each input image. The length of the radii depend
on image resolution and observed structure sizes, i.e., TB dimensions lie in the range
1µm - 100µ (see Chapter 3). Histograms are computed for each region and using the
information provided by the histogram, local entropies are computed. On the obtained
distribution of entropies we can then compute different statistics (see Figure 5.7). The
chosen metric for the purpose of this work was the mean of entropies. This yields a
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’global’ entropy measure descriptive of the whole image. We consider that the mean
is a good descriptor of the entropy distribution because we work with real data. As a
consequence, we assume a single peak in the distribution of the entropies, which when
tested proves to be true. However, if there are more peaks, the mean would still be a
good descriptor for the average information content in the image. The higher the value,
the more ’chaotic’ the underlying signal is and vice-versa.

Figure 5.7: Pipeline showing how Shannon’s Entropy can be used to characterize an
image.

5.2.2 Bone Coocurrence Value (BCV)

The second algorithm that we describe in this s ection stems from the original work of
Haralick ([19]). The author based his findings on the premise that "texture and tone
bear an inextricable relationship to one another. Tone and texture are always present in
an image, although one property can dominate the other at times" [19, p. 611]. This
algorithm uses the so-called Co-occurrence Matrix (CM) to characterize a given surface.
As a consequence, we must first introduce how the CM is computed.

Co-Occurence Matrix

The CM is a matrix computed over the intensity distribution of an image. It is used to
describe the spatial relationship between pairs of pixels at a fixed given offset, in any
dimension. Due to the dimensionality and color map of radiographs (i.e. 2D and gray-
scale, in this work we will only consider a particular case of CM, namely the Gray-Level
Co-occurrence Matrix (GLCM). A general formula for computing a set of GLCM for an
image is as follows:

C∆x,∆y(i, j) =
n∑
x=1

m∑
y=1

{
1, if I(x, y) = i and I(x+ ∆x, y + ∆y) = j

0, otherwise
(5.26)
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where I(x, y) is the intensity value at location (x, y) in an mxn image, (∆x,∆y) is a
known offset defined in x and y directions, i.e., horizontally, vertically, and diagonally
(see Figure 5.8) and i and j are intensity values. In other words, a CM holds at position
(i, j) the number of pairs of reference (at location (x, y) in the image) and neighboring
(at location (x+ ∆x, y + ∆y)) pixels that have intensities i and j respectively, at a given
offset (∆x,∆y). At this point, we notice that for every combination of any possible offset
(that lies between the boundaries of an image) and of the four directions shown in Figure
5.8 a CM can be computed. Moreover, "higher order" matrices can be built if more than
a single neighboring value is considered. For example, a third-order CM would take into
account a single reference location as before, but two neighboring values for comparison
and so on.

A CM is usually also expressed as a probability. To achieve this, each entry is divided by
the sum of the entries. This way, each entry of the normalized CM holds the probability
of occurrence of a specific pairing of pixels.

Figure 5.8: The four adjacency directions. Illustrated is the case only for a fixed offset of
on [81]

.

The Algorithm

A CM has the same number of rows and columns as the quantization level of the image. In
other words, if an image is 16-bit encoded, the resulting matrix will be (216 − 1) = 65535
x 65535 = (216 − 1). This alone poses storage and performance problems, let alone
computing more than one matrix. As a consequence, generally the algorithms that make
use of the CM for texture analysis first perform a down-scaling of an the images to 4- or
5-bit depths. By definition, the CM is a symmetrical matrix. Another trick for speeding
up the computation of the matrix is to first generate the entries of the half above the
main diagonal and then add this resulting matrix to its transpose. This is a significant
improvement over the classical double-counting method that becomes noticeable in case
of large and/or many matrices.

47



5. Methods

Features

As stated above, for each combination of offsets and angles a CM is computed. Each
of these matrices is then used to compute different features describing the texture of
an image. These features can be classified in three groups, according to the effects of
the used weights in the formulas ([82]). In the following listings, p(i, j)) represents the
normalized version of the (i, j) entry in the CM and Q is the quantization level of an
image.

1. Contrast group:

a) Contrast (Sum of Squares: Variance):
Q−1∑
i=0

Q−1∑
j=0

p(i, j)(i− j)2

When the considered pixels share the same intensity (i.e. i = j), the weight
attributed in this case is 0. If the differences in intensities are bigger than 1,
the weights increase polynomially by the power of 2. In other words, larger
differences are weighted more.

b) Dissimilarity:
Q−1∑
i=0

Q−1∑
j−0

p(i, j)|i− j|

As compared to the polynomially increasing weights in the case of contrast
and dissimilarity, here the weights only increase linearly.

c) Homogeneity (Inverse Difference Moment):
Q−1∑
i=0

Q−1∑
j=0

p(i,j)
1+(i−j)

As compared to the polynomially increasing weights of power 2 in the case
of contrast and dissimilarity, homogeneity weights by the inverse of intensity
differences.

2. Orderliness group:

a) Angular Second Moment:
Q−1∑
i=0

Q−1∑
j=0

p(i, j)2

b) Entropy:
Q−1∑
i=0

Q−1∑
j=0

p(i, j)(−ln(p(i, j))))

This measure is not related with our BEV. The BEV is derived from the
histogram of the raw image data, while this measure is derived from the CM.

3. Descriptive statistics group:

a) Mean (reference: σi):
Q−1∑
i=0

Q−1∑
j=0

i p(i, j) The CM mean is a different measure

from the image mean. While the usual mean is weighted by the frequency of
appearance of a quantity by itself, in this case the weighting represents the
frequency of occurrence of a quantity strictly in combination with another
one. This mean can be defined both with respect to reference pixels and with
respect to neighboring pixels (see below).
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b) Mean (neighbor: σj):
Q−1∑
i=0

Q−1∑
j=0

jp(i, j)

c) Variance (reference: σ2
i ):

Q−1∑
i=0

Q−1∑
j=0

(i− σi)p(i, j)

d) Variance (neighbor: σ2
j ):

Q−1∑
i=0

Q−1∑
j=0

(j − σj)p(i, j)

e) Correlation:
Q−1∑
i=0

Q−1∑
j−0

p(i, j) (i−σi)(j−σj)√
(σ2

i )(σ2
j )

From the features enumerated above we have selected dissimilarity, homogeneity, and
correlation as representative features for the BCV algorithm that we will test on the
available data sets. In total, 12 features, i.e., in four directions for each group, are
generated with the BCV method.

5.3 Feature Summary
In this section we provide an overview of all the features that the algorithms presented
above generate. In Table 5.1 the feature codes and the number of features per algorithm
are recorded.

Table 5.1: Summary of features produced by the methods used. With trailing H we mark
features measured in the horizontal direction, with V in the vertical direction, with D1
in the direction of the first diagonal (i.e., 45◦) and with D2 the features measured in
the direction of the second diagonal (i.e., 135◦). M stands for the mean value and DISS,
HOM and CORR for dissimilarity, homogeneity and correlation in the case of the BCV
algorithm.

Feature Code Total Number
BEV BEV 1

BSV BSV:M, BSV:H, BSV:V 3
BVV BVV:M, BVV:H, BVV:V, BVV:D1, BVV:D2 5

BCV BCV:DISS:H, BCV:DISS:V, BCV:DISS:D1, BCV:DISS:D2, BCV:HOM:H, BCV:HOM:V,
BCV:HOM:D1, BCV:HOM:D2, BCV:CORR:H, BCV:CORR:V, BCV:CORR:D1, BCV:CORR:D2 12
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CHAPTER 6
Method Validation

In the previous Chapter we have introduced in detail the algorithms that we are employing
in the hope of producing useful features from simple 2D knee radiographs that could
characterize the degenerated TB due to the presence of (early) OA. However we have not
yet got an idea whether the algorithms are working as they are supposed to. Thus, in
this Chapter we describe our approach to validate the said algorithms using artificially
generated images with known theoretical values. For example, in case of BSV and BVV
there are methods to build artificial fractals with known FD, which are then compared
with the FD produced by the algorithms through the applied heuristics. Ideally, the
computed FD should match the theoretical FD.

6.1 BSV and BVV Validation
We will first attempt at validating our two fractal algorithms. We are treating them
together due to their similar nature and goal and the fact that the same image data,
namely artificial fractals, can be used to validate both. To generate artificial fractals
(isotropic and anisotropic) we use the power spectrum method as suggested by Russ [83].
According to Russ, the general requirement of a surface to be of fractal nature is that

I ∝ |w|−(H+1)/2, (6.1)

where I is the intensity surface (of the power spectrum), H the Hurst coefficient (H) and
w the frequency. Generally

|w|2 ∝ w2
x + w2

y (6.2)

where wx and wy are the signal frequencies in the x and y direction respectively. If we
also want to control for the direction of the fractal, the procedure is slightly more complex
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due to the fact that another parameter is required, namely the angle a with respect to
the horizontal direction, which specifies the dominant orientation of the surface:

|w|2 ∝ wx
wy

((wxcos(a) + wysin(a))2 + (wxsin(a)− wycos(a))2) (6.3)

The intensities calculated applying the equations introduced above belong to the power
spectrum of the fractal. If the inverse Fourier transform is applied on this spectrum, the
desired fractal is obtained. If more than one such spectra are superimposed, a surface
with different FDs in different directions can be obtained. To illustrate the results of this
procedure, in Figure 6.1 we can observe an isotropic fractal (wx = wy) with a theoretical
H of 0.2. In Figure 6.2 an isotropic fractal with a theoretical H of 0.7, and in Figure 6.3
an anisotropic fractal with a theoretical H of 0.3 in the 15◦ direction and its associated
power spectrum are shown.

Figure 6.1: Isotropic fractal example with a theoretical Hurst exponent of 0.2 generated
with the power spectrum method.

To test the mathematical correctness of the BSV and BVV algorithms we have generated
a set of 1600 isotropic fractals of sizes 32x32, 64x64, 128x128, 256x256 with Hurst
coefficients between 0.1 and 0.8 in steps of 0.1 (i.e. 50 images for each size and Hurst
coefficient combination). We then calculated the H using the algorithms and compared
them in H -H plots with the theoretical H values set at generation (as shown in Figure
6.4). The diagonally-measured (45◦) Hs of the BVV algorithm are covered in Figure 6.5
separately since BSV has no capability at the moment to determine the Hs at intermediary
angles. We observe that in general, the algorithms are more stable with images of larger
sizes (128x128 and 256x256) in the case of isotropic fractals.

52



6.1. BSV and BVV Validation

Figure 6.2: Isotropic fractal example with a theoretical H of 0.7 generated with the power
spectrum method.

(a) (b)

Figure 6.3: Anisotropic fractal example with a theoretical Hurst exponent of 0.3 in the
direction 15◦. (a) power spectrum of the fractal. (b) the resulted fractal.

In the case of anisotropic fractals we have generated a set of 800 images: 400 with an
H of 0.3 in the 0◦ direction and an H of 0.7 in the 90◦ direction for sizes 32x32, 64x64,
128x128 and 256x256 (50 per size) and 400 with H of 0.3 in the 15◦ direction and an H of
0.7 in the 165◦ direction for the same sizes. The images were analyzed with the BSV and
BVV algorithms and the results were reported as plots showing the image size against
the computed H (as shown in Figure 6.6). We observe in Figure 6.6a that in case the
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dominant Hurst coefficients are along the main axes, they are largely underestimated
with small images (32x32, 64x64), but the algorithms perform better with larger images
(128x128 and 256x256) as it was also the case with isotropic fractals. In the case the
dominant Hurst coefficients are set along intermediary directions, the mean H values are
more stable (see6.6b), since the dominant Hurst coefficient directions are not completely
aligned with the main axes’ directions, but rather lie in between (i.e., we do not have a
feature that measures the H exactly in the 15◦ and 165◦ direction as compared to the
directions 0◦ and 90◦). However, the algorithms tend to overestimate the real H values
with large image sizes. We remind ourselves that the fractal texture algorithms provide
only an approximation of the true FD.
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(a)

(b)
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(c)

Figure 6.4: H -H plots (theoretical vs. computed) of isotropic fractals for different image
sizes as measured by the BVV and BSV algorithms horizontally and vertically. Each
point on the lines represents a mean of all the Hurst coefficients calculated for the images
created with the corresponding parameters. (a) the mean H as computed H on the y-axis.
(b) the horizontally-computed (0◦) H on the y-axis. (c) the vertically-measured (90◦) H
on the y-axis.

56



6.1. BSV and BVV Validation

Figure 6.5: H -H plot of anisotropic fractals for different image sizes as measured by the
BVV algorithm diagonally.
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(a)

(b)

Figure 6.6: H against image size plot of anisotropic fractals for different image sizes (L)
as measured by the BVV and BSV algorithms. Each point on the lines represents a mean
of all the Hurst coefficients calculated for the images created with the corresponding
parameters. a the H measured for 50 images per size of anisotropic fractals with H of 0.3
in 0◦ direction and H of 0.7 in 90◦ direction. b the H measured for 50 images per size of
anisotropic fractals with H of 0.3 in 15◦ direction and H of 0.7 in 165◦ direction.
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6.2 BCV Validation
The BCV algorithm can unfortunately not be validated using the generated images from
the previous sections since it is not of a fractal nature. To illustrate the correct detection
of the chosen BCV feature, we are using the example code provided with the scikit-image
Python library documentation [84]. The execution of the code yields the images in Figure
6.7. Eight patches were selected, four in the sky region (blue rectangles) of the original
image and four on the ground (green rectangles). The correlation and dissimilarity of
these patches were calculated in turn and the results were drawn in a scatter plot. Each
extracted individual patch is also illustrated separately. The patches that are smoother
(i.e., sky) produce a lower dissimilarity that tends to zero with increasing smoothness
and a higher correlation of the structure that tends to 1 (full correlation) with increasing
smoothness. On the other hand, the patches that are rougher produce lower correlation
(rougher structure), but higher dissimilarity. Our version of the algorithm computes a
homogeneity feature as well, but it is not represented in the Figure, since it is only an
inverse of the dissimilarity measure.
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Figure 6.7: Illustration of BCV (GLCM) features measured on a sample image.

6.3 BEV Validation

Similar to the BCV Validation presented in Section 6.2, the validation of the BEV
algorithm can not be performed on the artificially generated fractals introduced in
Section 6.1 since BEV does not approximate the FD of an image. The BEV is more of a
statistical measure directly related to the distribution of intensities in an image. Thus,
we approach the validation in a different manner. We know that the BEV is a measure
that describes the information complexity in terms of bits of information in a signal. As
such, we can generate simple images with known and fixed intensity ranges for which the
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BEV value is straightforward. In Figure 6.8 we can see examples of such test images.
For example, in Figure 6.8c we observe a 128x128 image that was generated to contain
only intensities in the range 0-63 (i.e., 64 values). Therefore, the information content in
terms of Shannon’s Entropy must equate to 6 bits (26 = 64). Indeed, when passing this
image to the BEV algorithm it measures an information content of exactly 4 bits. The
argumentation for the other images covering the other cases in Figure 6.8 is similar.

(a) (b)

(c) (d)

Figure 6.8: Sample images generated with known intensity ranges for the validation of
the BEV algorithm. (a) shows a sample image that consists only of zero-intensities with
a BEV measure of 0. (b) shows a sample image that consists only of intensities between
0-3 with a BEV measure of 2. (c) shows a sample image that consists only of intensities
between 0-63 with a BEV measure of 6. (d) shows a sample image that consists only of
intensities between 0-255 with a BEV measure of 8.
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CHAPTER 7
Statistical Methods for

Hypothesis Testing

In the previous Chapters 5 and 6 we have introduced and validated the algorithms that
we employ to characterize the texture of knee TB extracted from the data sets presented
in Chapter 4. In this Chapter we present the statistical methods that are used to explore
the features provided by the four algorithms. A statistical analysis is needed to determine
possible correlations between features, significant differences and other patterns in the
data. We will mainly apply statistical tests to find whether our algorithms actually
measure features that are different in persons affected by knee OA and in persons without
knee OA, or between patients that were healthy at the beginning of a study, but developed
OA at a later point. All statistical tests follow a specific pipeline and we will stick to
this five-step process when presenting the tests that we have used. The meaning of the
following terminology and the procedures involved in each step will become clear when
we will describe actual statistical tests that serve certain purposes:

1. Definition of the significance level of interest.
The significance level (or α level) is a measure between 0 and 1 that represents the
maximally allowed probability of making a mistake when picking a decision in a
statistical test.

2. Definition of the null hypothesis and alternative hypothesis.
Every statistical hypothesis test defines a null hypothesis (denoted as H0, i.e., the
hypothesis to be nullified/rejected) and an alternative hypothesis (denoted as H1 or
Ha) that assumes what we want to demonstrate. Following a strategy that stems
from the well-known reductio ad absurdum principle, the goal is to provide enough
evidence to reject the null hypothesis (unwanted effect), so that the alternative
hypothesis is assumed and thus the desired outcome is supported.
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3. Calculation of a test statistic.
A statistical test generally reduces the whole data set to a single characteristic
measure. This measure is called a test statistic and is used to support the decision-
making process. Based on this measure, the decision whether to reject the H0 in
favor of H1 or not is later made.

4. Comparing of the test statistic to known critical values and calculating
the p-value.
Generally, there is a so-called probability table available in literature for each type
of test, that holds information about the critical test statistics at different levels of
significance and for different sample sizes. The previously calculated test statistic
is compared to these values and the critical range is found. Based on this range,
the so-called p-value is also calculated.
The p-value shows the probability that the effect observed with the given samples
occurred ’by chance’ in case the null hypothesis was actually true and we rejected
it. A p-value of 0.05 (5%) and below is usually accepted to mean the data is valid.
In other words, in that case there would be a probability of less than 5% that we
would make a so-called Type I error when we reject the null hypothesis; it is very
unlikely that we rejected it and it is true in reality. This can be expressed in terms
of confidence levels as well: we are 95% confident, that we are not doing a mistake if
rejecting the null hypothesis. The desired confidence limit (also called the significance
level) α is set at the beginning of a test such that α+ confidence level = 100.

5. Reporting the results and deciding whether there is enough evidence to
support one hypothesis or another.
Generally, provided that the calculated p-value is less than the fixed significance
level, the H0 is rejected in favor of H1. However, if the p-value is greater than the
set significance level, the H0 is not accepted, but the result in this case is that
there is not enough evidence to reject it, so it is assumed to be true. A statistical
test does never accept a hypothesis. This is the reason why the test hypotheses are
defined in a way such that the desired outcome lies with H1. If there is enough
evidence to reject H0, then H1 is assumed to be true. Generally, so-called effect
sizes are also reported along with the p-values. The p-values are often not enough
to describe how strong the effects observed are. There are a variety of effect size
calculation methods available. Among them, the Cohen’s d is widely known and
employed [85]. However, in this work we aim at showing that there is indeed an
effect in the data, but we do not quantify this effect in detail.

All of the methods that we present in this chapter are employed by using available Python
3.6 libraries. Self-written scripts were built by using the modules numpy 1.12.0, scipy
0.18.1, pandas 0.19.2 and scikit-learn 0.18.1. Regression analysis was partly performed in
R. The algorithms that we presented in Chapter 5 were implemented in C++, but for
our software and for the purposes of the experiments presented in this work, C-object
Python wrappers are employed to import and execute the .dlls of the procedures.
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7.1 Shapiro-Wilk Test

The first statistical test that we introduce and describe is the Shapiro-Wilk test, which is
one of the many normality statistical tests available in the literature [86]. The Shapiro-
Wilk normality test was deemed the most powerful (even though it is among the oldest)
and stable normality tests in a recent study [87]. Generally such tests are used to check
the fulfillment of certain requirements that are imposed by more stringent and complex
tests, or by some models as we will see in the following sections.

After setting the desired significance level, the test hypotheses are defined and have the
following general form, applicable to all normality tests:

H0 : the sample in question is drawn from a normally distributed population.
H1 : the sample is drawn from a population that is not normally distributed.

Next, this test calculates its specific statistic, also called the W-statistic, that supports
the decision making process of whether the underlying data set is drawn from a normally
distributed population or not, by applying the following simple formula:

W =
(Σn

i=1aix(i))2

Σn
i=1(xi − x̄)2 , with ai = mT

i V
−1

(mT
i V
−1V −1mi)1/2

, and m = (m1, ...,mn)T
(7.1)

where x̄ is the sample mean, x(i) is the ith order statistic of the sample (i.e., the ith
smallest number in the sample), m is a vector containing the expected values of all the
order statistics and V is the co-variance matrix of the same order statistics.

In the next and last step, the measured test statistic is matched in the so-called Shapiro-
Wilk table that shows different critical W-values for different levels of significance and for
different sample sizes. A p-value is also approximated in this step from the same table
data. If this calculated p-value is smaller than the set α level, then H0 is rejected in
favor of H1.

7.2 F-test

This statistical test was introduced in the 1920s by Sir Ronald A. Fisher as the variance
ratio and later received the name of F-test in George W. Snedecor’s book in honor of the
original author [88]. An F-test is any statistical test where the computed test statistic
follows a F-distribution. These types of tests are generally used to test two independent
samples for equal variances if other statistical tests impose this kind of requirement on the
given samples. An F-test can be safely performed if and only if, the samples in question
were previously shown to be derived from normally distributed populations. This can be
achieved by employing a normality test, such as the one introduced in Section 7.1.
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After setting a desired significance level, the test hypotheses are usually defined as:

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2 (for a two-tailed test)
H1 : σ2

1 < σ2
2 (for a lower-tailed test)

H1 : σ2
1 > σ2

2 (for an upper-tailed test)

where σ2
1 and σ2

2 are the variances of the first and second population. The test statistic
is then defined as:

F = s2
1
s2

2
(7.2)

where s2
1 and s2

2 are the variances of the first and second samples. The larger the deviation
from 1, the stronger is the evidence that the samples are drawn from populations of
unequal variances. In the next step, the F-statistic is matched in an F-table that holds
the critical values for different α levels and samples sizes and the possible ranges of the
p-value are found. If the p-value is less than the set significance level, the H0 is rejected
in favor of H1 and H1 is assumed as true.

7.3 Levene’s Test
The Levene’s test is used to test the equality of variances (also called homoscedasticity)
among two or more groups [89]. We employ this type of test in our work prior to the
application of the K-means clustering algorithm to fulfill the homoscedasticity assumption
(see Chapter 8).

The first step to employ this test is to define the level of significance. This is usually 0.05
or 0.01.

In the second step, the test hypotheses are defined as:

H0 : σ2
1 = σ2

2 = ... = σ2
k

H1 : σ2
i 6= σ2

j for at least one pair (i, j)

In the next step the W-statistic is computed as follows:

W = (N − k)
(k − 1)

Σk
i=1Ni(Zi. − Z..)2

Σk
i=1ΣNi

j=1(Zij − Zi.)2 (7.3)

where:

• k is the number of groups,

• Ni is the number of subjects in the ith group,
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• N is the total number of subjects,

• Zij = |Yij − Ȳi| with Ȳi being the mean of the ith group and Yij being the measured
variable of the jth case in the ith group,

• Zi. = 1
Ni

ΣNi
j=1Zij is the mean of the Zij for the ith group and

• Z.. = 1
Ni

Σk
i=1ΣNi

j=1Zij is the mean of all Zij .

The computed W-statistic follows an F-distribution with k − 1 and N − k degrees of
freedom. As a consequence, this W-statistic is compared with the corresponding entry
in the F-table and if the W-statistic is larger than the critical F-value, the H0 that the
group variances are all equal is rejected in favor of H1 and H1 is assumed as true.

7.4 Student’s T-test

Introduced in 1908 by William Sealy Gosset under the pseudonym Student, the Student’s
t-test is a statistical population hypothesis test. It is used to test two averages to
determine whether there are any significant differences between them. Generally, the
Student’s test is employed in case information about the original population, like standard
deviation for example, are not known [90]. We employ t-tests in our work to be able
to make statements about how different the distributions of features coming from two
different groups of patients are. These groups can be: OA vs. non-OA, BL vs. 30m etc.

Each t-test calculates a test statistic (called t-value in this case). The t-value (or t-score)
represents the ratio between the difference of the group means and the differences within
the groups. The larger the t-score, the clearer the difference between the two respective
distributions.

There are three types of t-tests commonly used and each type assumes different null and
alternative hypotheses and expects different requirements about the data in question
before it can be applied:

1. One-sample t-test
This kind of t-test is used to compare a mean of a sample against a given, known
population mean. For example, one could compare the emissions of a car across a
period of time against a known maximally allowed limit. In this case the hypotheses
are defined:

H0 : µ = µ0

H1 : µ 6= µ0 (for a two-tailed test)
H1 : µ < µ0 (for a lower-tailed test)
H1 : µ > µ0 (for an upper-tailed test)
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where µ is the sample mean and µ0 is the known limit that we compare against.
The next step is to find the t-value which is calculated as:

t = µ− µ0
s/
√
n

(7.4)

where µ is the mean of the available sample, s is its standard deviation and n the
sample size. This t-value is then compared with known critical t-values from a
so-called t-table. For this, the degrees of freedom of the measurement must also
be calculated. In the case of the one-sample t-test this is as simple as n− 1. The
degrees of freedom express how many variables are there available that can vary
and thus change the state of the system, or in other words, the outcome. Now, the
last step is to calculate the p-value. This is done as following:

p = 2 · Pr(T > |t|) (for two-tailed tests)
p = Pr(T < t) (for lower-tailed tests)
p = Pr(T > t) (for upper-tailed tests)

where T is a random variable that comes from a t-distribution. If the calculated
p-value is smaller than the significance level, then we can reject H0 in favor of
H1. In other words, the data provides enough evidence to safely reject the null
hypothesis. However, this type of test assumes that the provided sample is normally
distributed. To test for normality, the Shapiro-Wilk test that was presented in
Section 7.1 can be used.

2. Two-sample t-test (also called the Independent Sample T-Test)
As opposed to the one-sample t-test, the two-sample t-test compares two means
of two independent samples. For example, these tests can be used to compare the
mean production of two different (so independent) gardens of apple trees. In this
case, the test hypotheses are defined as follows:

H0 : µ1 = µ2

H1 : µ1 6= µ2 (for a two-tailed test)
H1 : µ1 < µ2 (for a lower-tailed test)
H1 : µ1 > µ2 (for an upper-tailed test)

where µ1 is the mean of the first sample and µ2 is the mean of the second sample.
Similarly to the pipeline presented for the one-sample t-test, the t-value calculation
follows:

t = x̄1 − x̄2√
s2
p( 1
n1

+ 1
n2

)
, with s2

p = (n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2 (7.5)

where n1 and n2 are the sizes of the first and second sample, x̄1 and x̄2 are the
means of the first and second sample and s2

1 and s2
2 are the variances of the first
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and second samples. Again, the obtained t-value is compared with the t-table
using the known degrees of freedom (n1 + n2 − 2) and a p-value is approximated or
calculated in the same way as was the case for one sample t-tests. If the p-value
is smaller than the originally-set significance level, then H0 is rejected in favor of
H1. However, generally a two-sample t-test also assumes a set of facts about the
underlying data before it can be applied:

a) Both samples must be derived from normal distributions. This is checked
using the Shapiro-Wilk test from Section 7.1.

b) Both samples should have equal variances. This is checked using an F-Test as
described in Section 7.2.

3. T-tests for paired samples (also called the Dependent Sample T-Test)
This version of a t-test is a special case of the two-sample t-test in that the
compared samples are now dependent. For example, such a test could be applied
if the production of an apple tree garden is measured, then the trees are treated
with some kind of chemical boosting solution and the production is recorded again.
The paired-samples t-test is capable of detecting the difference between dependent
(same trees before and after the treatment) samples. In the case of the dependent
samples t-test, the statistical hypotheses are defined as follows:

H0 : µd = D0

H1 : µd 6= D0 (for a two-tailed test)
H1 : µd < D0 (for a lower-tailed test)
H1 : µd > D0 (for an upper-tailed test)

where µd is the mean difference, or the mean of the distribution of sample differences,
between the paired samples. In other words, H0 assumes that there is no difference
between the measured dependent samples. The calculation of the t-value is then done in
the following manner, similarly to the previous cases:

t = d̄−D0
sD/
√
nD

(7.6)

where d̄ is the mean of the difference sample, the D0 is the set difference that we are
comparing against (usually 0), sD is the standard deviation of the difference sample
and nD is the size of the difference sample. This t statistic is then compared to the
values in a t-table and with its help the range or the exact value of the p-value may
be calculated as previously done. If the p-value is below under the specified level of
significance, H0 is rejected in favor of H1. As opposed to the first two types of t-tests,
the dependent samples t-test assumes that the samples’ difference is normally distributed.
This assumption is easily checked with the help of the Shapiro-Wilk test presented in
Section 7.1.
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7.5 Analysis of variance (ANOVA)

The analysis of variance (ANOVA) was introduced by R. Fisher as a generalization of
a t-test to more than two groups. ANOVA is used to compare three or more means of
variable distributions for statistical significant differences. We use this type of test in our
work to be able to make statements about the differences of the distributions’ averages of
the same patients across the duration of the MOST study. The idea behind it is that the
population means are reflected in the variances of the samples. If the samples have the
same mean and variance, then the joint sample distribution will be just a superposition
of identically placed distributions (as shown in Figure 7.1a). However, if the means of
the samples are different, the joint distribution becomes broader (as shown in Figure
7.1b) and this can be detected by the ANOVA hypothesis test.

(a) (b)

Figure 7.1: (a) the joint sample distribution of smaller distributions with the same
mean and variance. (b) the joint sample distribution of smaller distributions with equal
variances but different means; the shape of the joint distribution in this case is impacted
by the variance of the samples [91].

There exist different versions of ANOVA based on the number of independent variables
taken into account. One-way (or one-facor) ANOVA is computed only with respect to
a single independent variable. For example, three groups of patients are treated with
a different approach each and the differences of the mean responses are then compared
using ANOVA. In this example, the used medicine per se is the independent variable
and it has three levels: first medicine that went to the first group, second medicine
for the second group, and the last medicine to the third group. A two-way ANOVA
would, in comparison, take into consideration more than one independent variable. In
the example above, the second independent variable could be the life style of the treated
patients with three levels: inactive, mildly active, very active. However, to apply these
versions of ANOVA, the samples drawn must be completely independent from each other.
The ANOVA that are applied using this logic, are called between-subjects ANOVA or
between-samples ANOVA.

As with the other presented statistical tests, in case of the ANOVA a null and an
alternative hypothesis must also be defined, after setting a desired significance level, in
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the following way:

H0 : the means of the groups are all the same.
H1 : the means of the groups are different.

The next step is to compute the test statistic of the ANOVA test, which follows an
F-distribution, just as with the F-test presented in Section 7.2. This test statistic is also
called the variance ratio (V.R.) and is computed as following:

V R = Among − groups MSb
Within− groups MSw

(7.7)

where the MS are the mean-squared distances computed from the data. The two MS
stem from the total variability of measurements that is partitioned into among-groups
variability and within-groups variability (as shown in Figure 7.2). The among-groups
M.S.b is built by computing the deviations of all group means to the total groups’ ’grand’
mean (SSb) and dividing it by the degrees of freedom of the independent variable (DFb):

MSb = SSb
DFb

, with

SSb = Σk
i=1ni(x̄i − x̄)2 , and

DFb = k − 1

(7.8)

where k is the number of levels of the independent variables (in Equation 7.8, k would
be equal to 3 and thus the degrees of freedom would be 3− 1 = 2), ni is the number of
measurements in the ith group, x̄i is the mean of the ith group and x̄ is the mean of all
groups together. The within-group MSw is obtained by first calculating the within-group
deviation SSw and by dividing it by the degrees of freedom, which is total number of
measurements minus the number of groups (see Equation 7.9).

MSw = SSw
DFw

, with

SSw = Σk
i=1Σni

j=1(xji − x̄i)2 , and
DFw = Σk

i=1(ni)− k

(7.9)

The resulting F-statistic (VR) is then compared with an F-table and the p-value range is
approximated. If the p-value is below the significance level that we selected initially, H0
is rejected in favor of H1. To compute this test safely, the group samples must come from
a normally distributed population, a fact that can be tested prior to the employment of
the actual ANOVA with the Shapiro-Wilk test that we have already discussed in Section
7.1. Also, the variances of all the groups must be equal. In theory, we could test for this
using the F-test presented in Section 7.2, however the need of repetition of the F-test
will inflate the real significance level of the entire test as a whole. For this reason, other,
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Figure 7.2: Total variability of measurements partitioning for between-subjects ANOVA
[92].

related tests must be used. The O’Brien variance homogeneity test is a more complex
extension of the F-test, but we will not go into details about this specific test. Another
example is the Levene’s test that was introduced in Section 7.3.

As mentioned above, independent-samples ANOVA works only if the analyzed groups are
independent from one another. However, in our work we will deal with measurements
recorded for the same patients across several visits (MOST study, as shown in Chapter
4). In other words, the samples will be dependent of each other. For this reason, the
ANOVA approach that was described up to this point is not suited for the significance
test. The repeated-measures analysis of variance (RMANOVA) deals with dependent
data. The F-statistic is computed in a similar manner in this case:

F = MSconditions
MSerror

, (7.10)

where MSconditions is the same as MSb from independent-measures ANOVA and MSerror
is the equivalent of the independent-sample ANOVA within-subject source of error (MSw)
but smaller (as shown in Figure 7.3). The smaller error is due to the fact that the
measurements are produced from the exact same sources at each of the independent
variable’s levels. MSconditions is calculated as the previous MSb and MSerror can be
calculated directly (complicated formula), but it is usually faster to extract it from
already-existing knowledge of the other sums. For example (as shown in Figure 7.3):

MSerror = SSerror
DFerror

, with

SSerror = SSw − SSsubjects, and
DFerror = (n− 1)(k − 1)

(7.11)

where n is the number of subjects (participants) and k is the number of levels of
the independent variable (usually time). As mentioned, SSw is obtained as with the
independent-measures ANOVA and to calculate the SSsubjects, the subjects of the test
are treated as levels of another independent variable which is subject. From this follows:

SSsubjects = k · Σn
i=1(x̄i − x̄)2 (7.12)
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7.5. Analysis of variance (ANOVA)

Figure 7.3: Total variability of measurements partitioning for dependent-subjects ANOVA
(repeated-measures ANOVA) [92].

where k is the number of levels of the usual independent variable time, x̄i is the mean
measurement across visits of the ith subject and x̄ is the total mean of the visit means
(the grand mean). After SSw and SSsubjects are computed, the SSerror is obtained as
shown in Equation 7.11. The F-statistic can then be calculated as shown in Equation 7.10.
The F-statistic is then compared against an F-table as usual and the test procedure from
this point on is identical to any other statistical test that we presented. The requirements
of the ANOVA apply for RMANOVA as well.

The tests used for checking homogeneity (also called sphericity or homoscedasticity) of
the data, which is a crucial requirement for ANOVA, will not be described here in detail
due to their more complex nature. For every statistical test that we employ in this work
we make use of pre-programmed Python libraries that offer the required functionality.

The problem with ANOVA tests is that they are capable of recognizing significant
statistical differences among groups, but are not capable of indicating where exactly,
between which groups, do these differences occur. For this matter, generally so-called
post-hoc tests are employed after receiving confirmation of a significant difference from
ANOVA. An example of this would be the Tukey’s Honest Significant Test (HSD) [93],
which is a generalization of a t-test for multiple comparisons. If we were to apply more
pairwise t-tests, the real significance level of the end result would be much higher than
the initially specified value (5%). In other words the risk of a Type I error increases if
increasing the number of comparisons. This phenomenon is known as Family-Wise Error
Rate or Alpha Inflation and depending on the number of repeated comparisons, the new,
adapted significance level is computed as following:

ᾱ = 1− (1− α0)m (7.13)

where α0 is the initially-specified significance level (usually 5%) and m is the number
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of total comparisons or the number of total hypothesis pairs tested. Tukey’s HSD is
one of the approaches that corrects these inflations. Another example would be the
Holm-Bonferroni method [94].
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CHAPTER 8
Model Building for Classification

and Early Prediction of OA

In this chapter we present our approaches at building and training artificial neural
networks that are able to learn from the features provided by our algorithms from labeled
image data and make a prediction on new, unknown data. We will thus describe the
process of significant feature selection and we will give details on the chosen network and
model types.

8.1 K-means Clustering

The K-means clustering algorithm is one of the simplest and earliest form of clustering.
It was first proposed in 1957 at Bell Labs, but publicly presented only in 1982 [95]. It is
based on the widely-used approach of vector quantization. The goal of the procedure is
to divide given data into k partitions (also called clusters) in an unsupervised manner
(i.e., the algorithm is able to separate and classify unlabeled data). To achieve this,
two important steps are repeated in a loop, after k initial random points have been
chosen from the data as initial centroids, until intra-cluster variance is minimized and
inter-cluster variance maximized:

1. Assignment step: Each data point in the set is assigned to the nearest centroid.
This is done by minimizing the Euclidean distances between the point and the
centroid. In other words a partitioning of the observation is done based on the
Voronoi diagram spanned by the centroids.

2. Update step After each assignment step, new means are calculated for each cluster
as the new centroids.
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The algorithm stops when no assignments change from one loop to another. In general
it is very hard to choose the right number of clusters if no external constraints are
available. Usually other algorithms (such as DB-scan for instance) are employed in those
cases that first estimate the number of clusters. However, in our case, we have the
previous knowledge from our data sets that there must be only two groups (clusters) of
patients: with and without OA. At the same time we assume that our data is normally
distributed, since it is real data. This fact is confirmed by Shapiro-Wilk tests. The other
two assumptions of the K-means algorithm is that the feature variances are equal and
that the number of the subjects in all groups are approximately the same. We test the
former condition with the Levene’s test as presented in Section 7.3 and the latter is taken
care of by the SMOTE technique as shown in Chapter 4 .

In this work, we use K-means clustering as a first step in our experiment. This step
indicates whether the separation in our feature space is extremely good or poor. If there
are clearly separable clusters in the hyperspace, the K-means clustering will produce a
high classification score. If the boundary between the two groups, i.e., OA and non-OA,
is not linear and does not have a large margin (i.e., distance to the closest points in
each group from the separation boundary), the K-means classifier will show a poor
performance.

8.2 Support Vector Machine (SVM)
As opposed to the K-means, the SVM is a supervised learning technique that is trained
to classify data based on a labeled training set. The method searches the best separation
boundary between the two groups of data (as shown in Figure 9.5). The separating
hyperplane can be defined by:

w · x+ b = 0, (8.1)
where w is the coefficient/weight vector (which is perpendicular to the hyperplane) and
x is the vector of observations with each entry xi being multidimensional. Ideally, the
hyperplane will be at maximum distances from the closest points (referred to as the
Support Vectors) of the two classes at the same time in case of linearly separable data.
This distance is called the margin of the system and is equal to 1

||w|| , a fact derived
from the equations of the planes passing through the support vectors by computing a
perpendicular distance from a point on one of them to a point on another:

P−1 : wx+ b = −1
P+1 : wx+ b = 1

(8.2)

In other words, to maximize the margin, we must minimize the ||w|| so that every
observation is correctly classified, which is the same as minimizing 1

2 ||w||
2 so that:

yi(xi ·w + b)− 1 ≥ 0, ∀i, (8.3)

where yi is the known label (+1 or -1) of the data vector xi. This formulation facilitates
the later optimization by means of Quadratic Programming (QP) in the coming steps.
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The maximization is done by introducing the so-called Lagrangian multipliers α≥ 0:

LP = 1
2 ||w||

2 −α[yi(xi ·w + b)− 1], (8.4)

which after short manipulations leads to:

LP = 1
2 ||w||

2 −
N∑
i=1

αiyi(xi ·w + b) +
N∑
i=1

αi. (8.5)

where N is the number of observations. In the next step, Equation 8.5 must be minimized
with respect to w and b, but maximized with respect to α (with αi ≥ 0 ∀i). Note that
αi = 0 only in the case of the support vectors. Differentiating with respect to w and b
and replacing in Equation 8.5 finally leads to:

LD =
N∑
i=1
−1

2

N∑
i,j=1

αiHijαj , (8.6)

with Hij = yiyjxixj . LD is only dependent on α and must be maximized so that αi ≥ 0
and

∑N
i=1 αiyi = 0. This can be solved by means of a quadratic optimization and α is

returned. Earlier, when setting the derivative of LP with respect to w to 0, an expression
for it is found:

w =
N∑
i=1

αiyixi. (8.7)

By replacing the determined αi in this equation, we find w. To find b, one must have
a support vector verify Equation 8.3 and the calculation of the constant b becomes
straightforward. At this point, the variables w and b are known and with them the
optimally separating hyperplane is also found. A limitation of the SVM is that in its
original form it can not make any smart selection of the features it uses for finding the
optimal hyperplane. However, there is an approach called SelectFromModel, which treats
the learned weights w as feature importances and based on that it iteratively selects an
increasing number of best features, which then are used for model building. The features
are added to the feature pool one at a time until all are consumed and for each subset,
an accuracy is computed. In this way, the best combination of features (in terms of their
importance) can be found.

The SVM generally assumes independent and identically distributed (IID) data. However
it has been recently shown that the SVM is also stable under dependent data [96]. We
assure that our data is identically distributed by normalizing the data before the training
of the model. Subsequently we train a linear SVM that attempts to learn the differences
between two independent groups of patients in the discrimination tasks with the Portugal
and MOST data sets: OA vs. non-OA. We train a similar classifier for the early prediction
task, but with dependent data, since we compare OA vs. non-OA features coming from
the same patients that were healthy at BL, but became ill over the duration of the study.
The outcomes are presented in Chapter 9.
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8. Model Building for Classification and Early Prediction of OA

Figure 8.1: SVM procedure illustration. Planes P1 and P2 separate the two classes, but
not in an optimal manner, i.e., the squared distances to the plane are not maximized.
The optimal separation is done with plane P .

8.3 Random Forests

The Random Forests are a statistical learning method based on ensembling and are
generally used for classification or regression [97]. It is based on a bagging approach since
at training, many trees are ’grown’ based on a random subset of the initial observations.
The first step in a classification task is to select a random subset of observations with
known labels. This is the preparation step for learning. In the next step, each feature is
verified for its separation power based on a simple threshold, against the ground truth.
In other words, the feature that separated the subset best (with the least false positives
and negatives), is considered the decision feature at the current splitting node. In the
third and the next steps, the obtained subsets are split again based on other features
that perform the best until a stopping criterion is met. All the steps are repeated until
the desired number of trees are trained. One of the stopping criterion that are used, is
called the Gini Impurity which aggregates the misclassification rates of the nodes of the
trees. The goal is to minimize this impurity, but once there is no change in the impurity
after splitting, the stopping criterion was reached. The magnitude of the update in Gini
impurity that takes place at each node is also a direct measure of feature importance.
Another stopping criteria would be a minimum number of observation that a subset
should contain after splitting. This is usually given either relative to the size of the entire
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data set or relative to the size of the selected subset.

Once the forest is trained, new inputs can easily be classified by voting. All the trained
trees will return an output whether the new observation belongs to class one or class two.
Not all the trees are built the same and thus they will not return the same result. As a
consequence, generally a majority voting is applied to determine the new observation’s
class. The single real drawback of the Random Forests is the model size that can get
extremely large extremely fast. A prediction in that case becomes slow.

In this work we employ Random Forests with a view of eliminating insignificant or
correlated features from the feature space. This procedure is illustrated in Chapter 9.

8.4 Principal Component Analysis (PCA)

The earliest form of Principal Component Analysis (PCA) was introduced in 1901 by
Pearson [98], but was later reintroduced under different names with slight improvements or
additions, such as eigenvalue decomposition, singular value decomposition, etc. The PCA
is a statistical procedure that ’rotates’ the system of coordinates of possibly correlated
variables so that the new system is more ’efficient’. After the so called orthogonal
transformation, the new system will represent the observations as linearly uncorrelated.
These new, transformed variables are called principal components.

The system rotation takes place in such a manner that the projection on the axis of the
first principal component accounts for the largest variability in the data. The rotation
vector (also called the loadings) for the first principal component is computed as follows:

w(1) = argmax
{wTXTXw

wTw

}
(8.8)

where X is the mean-centered data matrix containing all the observations on the rows
and the features along columns. The quantity in the curly brackets is also referred to as
the Rayleigh quotient. With known w(1), the transformed coordinates of an observation
can be given as:

t1(i) = x(i) ·w(1) (8.9)

which are called the scores. The back-transformation is achieved by multiplying the score
t again with the weight vector w. The next components also account for the ’next largest’
variability in the data that is not already covered by the first component. To determine
these, the previously computed components must be subtracted from the original data
matrix, which returns a new matrix. Using this matrix, the Equation 8.8 is applied again
to find the next rotation weights corresponding to the component and finally computing
the corresponding scores and so on.

The PCA procedure is sensitive to the scaling of the original observations. Due to this, a
standardization of the data is a compulsory preparation step prior to the computation of
the transformation.
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In this work we use PCA for visualization purposes. The dimensionality reduction allows
a projection of the feature space into 2D. We use this procedure to visualize the results
of the K-means clustering.
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CHAPTER 9
Results

In this chapter we present the results that we obtained on both the data sets that we
presented in Chapter 4. Based on the results of statistical tests we investigate whether
we can reject or accept the hypotheses that we have previously defined given the available
data samples. We also discuss which feature (set) is better for discriminating, predicting,
and tracking the progression of OA based on the accuracy measures of the models that
we have built.

9.1 Portugal Data

Before we applied any sort of statistical test, we first investigated the texture features
for influence from other confounding variables, such as age, BMI, voltage (kV), gender,
or exposure (mAs). After a simple visual inspection of the plots shown in Figure 9.1a
we notice slight correlations between, for example, BSV:H and BMI for all ROIs. The
hypothesis is confirmed if computing pairwise Spearman correlation coefficients and
testing them for being significantly different from 0 using a t-test. Most of the features
showed significant correlations with age or BMI, which together with gender are known
risk factors for OA incidence [99, 100]. As a consequence, we decided to adjust all
our features, as we are only interested in the texture factor contained in each feature,
uninfluenced by any other clinical covariates or machine parameters. To compute the
correct adjustment parameters we employed a multi-linear regression (MLR). We assumed
the following general model:

feat = BMI + age+ gender + kV +mAs+ feat0 (9.1)

which leads to:

feat0 = feat−BMI − age− gender − kV −mAs (9.2)
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where feat0 is the uninfluenced BSV, BVV, BEV or BCV feature. In other words, using
MLR we find the contributions of BMI, age, kV and mAs (gender is already taken care
of since in the experiment based on the Portugal data we only selected females) and we
subtract these contributions from the originally calculated features. The result can be
observed in Figure 9.1b based on the example of BMI correlation. After adjustment, the
computed Spearman correlation coefficients do not differ significantly from 0 anymore.
Through this adjustment we want to ensure that the effects that we find based on the
computed features come solely from the bone texture and are not influenced by anything
else.

After feature adjustment for confounding influences, we first employed an unsupervised
learner to investigate its performance without any training. We employed a K-means
classifier, as the features were found to be homoscedastic with a Levene’s test (p-value <
0.05). The results after using the K-means classifier can be seen in Figure 9.2. The best
classification accuracy of 64% is obtained if using all 126 features in combination. To
improve this result we decided to employ a type of feature selection based on Random
Forests. In Figure 9.3 we observe the top ten features sorted by ascending importance
according to the random forest model. Note that in the case of the BEV only six features
were given in total. We observe that the most important feature in all cases is the one
measured at the MF ROI, which is the femural medial compartment. This is somewhat
expected since the medial compartments theoretically bear the highest loads . Considering
only these top-ten scoring features for the K-means algorithm calculation, the results
improved slightly (as shown in Figure 9.4). The classification accuracy if using all selected
36 features (top-ten from each of BSV, BVV, BCV and six from BEV) has reached 71%,
while the classification scores per feature group did not improve significantly.

Considering supervised learning with a linear SVM and using all 126 features, the
classification scores improve significantly for all feature groups over the scores obtained
with unsupervised learning (as shown in Figure 9.5). The best separation of cases from
controls is achieved by taking all the features together, which produces a classification
score of 84% in terms of ROC-AUC. A model configuration can also be found along the
ROC-curve that reaches the highest sensitivity, specificity, precision, and accuracy of 73%,
85%, 83%, and 79% for this patient separation task (see the green point in Figure 9.5).
Employing the same linear SVM model trained the top performing features according to
the Random Forests approach does not improve the classifications significantly over the
models without a prior feature selection step (as shown in Figure 9.6). In general the
classification score and the other best-configuration metrics even decrease. This could
be due to losing information while reducing the feature space. The SVM models were
validated by a 100-fold cross-validation procedure, each fold randomly splitting the data
into a training and a test set with the test set being 15% the size of the whole data set.

In another approach we have tested each feature individually whether its measurements
are significantly different between the OA and the non-OA groups. For this we have used
two-sample two-sided t-tests with a significance level of 0.05. Prior to the application of
the tests, we must consider the requirements for a correct application. The normality of
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(a)

(b)

Figure 9.1: Correlation of BSV:H with the BMI before (a) adjustment and after (b)
adjustment. 83
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the samples was tested using Shapiro-Wilk tests and the equality of variances was only
tested for the feature samples which according to the Shapiro-Wilk test results (p<0.05)
are drawn from normal distributions. The feature samples that showed equal variance
between the OA and non-OA groups (p<0.05 according to Levene’s tests) were selected
and fed into t-tests. The feature samples that generated p-values smaller than 0.05 at
the end of the t-test were selected and finally a SVM model was built using only these
features:

• BCV:CORR:H_M1

• BCV:CORR:D1_M1

• BCV:CORR:V_M1

• BCV:CORR:D2_M1

• BCV:CORR:H_LF

• BCV:CORR:D1_LF

• BCV:CORR:V_LF

• BCV:CORR:D2_LF

• BCV:HOM:H_MF

• BCV:HOM:D1_MF

• BCV:HOM:V_MF

• BCV:HOM:D2_MF

• BCV:CORR:H_MF

• BCV:CORR:D1_MF

• BCV:CORR:V_MF

• BCV:CORR:D2_MF

The classification score of this model can be seen in Figure 9.7. The classification score did
not improve over other models, while the other best-model metrics decreased significantly
as compared to the best configuration found in the original feature space with the entire
feature pool. However, we observe that the features that were significantly different
between the patient groups are all BCV features and 75% of them are measured at the
medial compartments. Also, approximately 75% of the features listed are measured on
the femur and removing these features, significantly impacts the classification scores.
This was tested by building two separate classifiers that were once trained with and once
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without femur features. The mean classification scores were then compared by t-tests. As
a conclusion, we can only partly reject the hypothesis that we have defined in Chapter 4,
namely that there is no significant difference in the texture values measured by the fractal,
entropy, and Haralick features between the OA and non-OA groups on the Portugal data
set. This hypothesis can be rejected only in part in case of some of the BCV features
(listed above). In the case of the other 110 features, there is not enough evidence given
in the data set to reject the formulated hypotheses at a 5% level of significance.

In Table 9.1, the results of the best-performing model are listed for a better overview. In
conclusion of this section we note that the best configuration of a classifier is achieved
when considering the entire feature pool for classification. Considering each feature group
alone, the BSV-based models achieve the highest scores on the Portugal data set.

Table 9.1: OA detection maximum scores in terms of ROC-AUC obtained by all four
algorithms if selecting features with SelectFromModel. The combined (’all’) scores are
ROC-AUC scores as well, but computed on models trained on the complete pool of
features. The sensitivity, specificity, precision, and accuracy of the best classifiers (as
seen in Figure 9.5) are also given. Portugal data set.

feature
group BSV BVV BEV BCV all

ROC-AUC 0.79 0.78 0.76 0.77 0.84
sensitivity 0.73 0.65 0.63 0.63 0.73
specificity 0.77 0.83 0.81 0.83 0.85
precision 0.76 0.80 0.76 0.78 0.83
accuracy 0.75 0.74 0.72 0.73 0.79
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(a) BSV (b) BVV

(c) BEV (d) BCV

(e) all features

Figure 9.2: K-means classification result. 2D projection of the 126-dimensional hyperspace
((a)-(d)) for each feature group alone and (e) for all features combined using PCA. Portugal
data set.
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(a) BSV (b) BVV

(c) BEV (d) BCV

(e) all features

Figure 9.3: Top ten features sorted by ascending importance ((a)-(d)) for each feature
group alone and (e) for all the features combined as reported by the Random Forest
model. Portugal data set.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.4: K-means classification result on the Portugal data. 2D projection of the
36-dimensional hyperspace, i.e., top-scoring features from each group only.(a)-(d) for
each feature group alone and (e) for all the features combined. Portugal data set.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.5: Support vector machine classification scores (a)-(d) for each feature group
alone and (e) for all the features combined in terms of ROC-AUC. The green arrow
points to the best model configuration that achieves the highest model metrics. These
model metrics are also displayed. Portugal data set.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.6: Linear SVM classification scores (a)-(d) for each feature group alone and (e)
for all the features combined in terms of ROC-AUC. The feature pool was reduced by
SelectFromModel. The green arrow points to the best model configuration that achieves
the highest model metrics. These model metrics are also displayed. Portugal data set.
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Figure 9.7: Linear SVM classification scores in terms of ROC-AUC if using the statistically
different features between OA and non-OA for training. The green arrow points to the
best model configuration that achieves the highest model metrics. These model metrics
are also displayed. Portugal data set.

9.2 MOST Data
The features obtained from the MOST images are first adjusted with respect to the
confounding variables in the same manner the Portugal data features were adjusted
in Section 9.1. However, when investigating the relationships of, for example, BSV to
BMI for all three visits at the same time, one can observe a strange displacement of
the distribution of the 84m measures (as shown in Figure 9.8). The reason for this,
we assume, is an update to the digitization software on the MOST X-Ray machines
somewhere between visit 30m and 84m. To control for this behavior, we calibrate/adapt
the features measured at 84m to the ones measured at BL prior to the adjustment step.
The transformation that we use is based on the straightforward z-transform:

featnew_84m = (feat84m −mean84m)
std84m

stdBL +meanBL (9.3)

The way the results of the classification models are reported, depend on the approached
task. In the following subsections we show our results obtained on the MOST image data
set for the diagnosis, early prediction, and progression tasks separately.
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Figure 9.8: BSV vs. BMI non-calibrated (a) and calibrated (b).

9.2.1 Diagnosis

Employing K-means clustering as unsupervised learning, the classifications scores do not
differ significantly from random (55% in terms of ROC-AUC at max) for BL, 30m and
84m, males and females, with or without feature selection through random forests. All
the features fed to the K-means classifier were found to be homoscedastic by employing
a Levene’s test (p-value < 0.05).

In the case of supervised learning with a linear SVM and 100-fold cross-validation, without
any feature selection we obtain at BL a maximum classification score of 82% and 80% in
terms of ROC-AUC for the males and females using all features combined. At 30m we
obtain for the males a maximum classification score of 75% and for the females 85% using
all the features combined. At 84m the maximum scores are 82% and 75% for males and
females using all features combined. Combining the linear SVM with a preceding variable
selection by means of Random Forests does not improve the scores. We observe, that
when taking each algorithm independently, the best classification metrics are generally
obtained by the BCV features both for males and females.

Another approach that we made was to select the features according to the coefficients
learned by the SVM model using the SelectFromModel class. These coefficients were
treated as feature importances and the combination of features that achieves the largest
scores is selected. With this model, at BL, the males obtain generally better scores,
while the maxima for both males and females is obtained using the BCV values: 78%
and 75% respectively. However, if we combine all the features and then select the best,
we obtain a classification score of 82% and 80% respectively. At 30m, the best scores
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are also obtained by the BCV features: 80% and 77% ROC-AUC for males and females
respectively. A combination of features yields, however, 85% and 75% for males and
females. At 84m the BCV features are once again the best performers, obtaining scores
of 78% and 74% for males and females. Combining BSV, BEV, BVV and BCV features
yields scores of 82% and 75% for males and females respectively.

The best scores that we have obtained can be seen in Table 9.2 together with the model
metrics of the best configuration found from the ROC. When applying t-tests we find
that there is no significant difference between the scores obtained for men and women at
BL, 30m, or 84m.

Last but not least, we applied t-tests in the same fashion as with the Portugal data set to
find the features that indicate significantly different measures between OA and non-OA.
After normality and equality of variance tests, the t-tests returned the significantly
different features. At BL, 60% of the returned features for the males are measured at the
femur ROIs. For the females, 83% of the most different features are BCV features. At
30m, 76% and 50% classification scores in terms of ROC-AUC are obtained for males
and females with the features selected being mixed. Building a SVM model using only
these features, a score of 75% and 67% in terms of ROC-AUC is obtained with 100-fold
cross-validation for males and females. At 84m, 75% and 68% classification scores were
obtained for males and females. 76% of the features that were significantly different for
the males were BCV features with mixed positioning, while for females the features were
mixed (both in terms of positioning and feature groups).
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Table 9.2: OA diagnosis maximum scores obtained by all four algorithms for males
and females separately by selecting features with SelectFromModel. (a) shows baseline
model metrics, (b) shows metrics obtained from the second visit, and (c) contains metrics
obtained from the third visit. The combined scores are ROC-AUC scores as well, but
computed on models trained on the complete pool of features. MOST data set.

BL
gender male female
feature
group BSV BVV BEV BCV all BSV BVV BEV BCV all

ROC-AUC 0.61 0.77 0.53 0.78 0.82 0.64 0.67 0.57 0.75 0.80
sensitivity 0.57 0.71 0.39 0.71 0.72 0.64 0.67 0.62 0.72 0.73
specificity 0.67 0.72 0.78 0.78 0.82 0.63 0.65 0.57 0.71 0.74
precision 0.63 0.71 0.65 0.77 0.79 0.64 0.65 0.59 0.70 0.74
accuracy 0.62 0.69 0.58 0.75 0.77 0.65 0.66 0.59 0.70 0.73

(a) BL

30m
gender male female
feature
group BSV BVV BEV BCV all BSV BVV BEV BCV all

ROC-AUC 0.63 0.80 0.63 0.80 0.85 0.69 0.76 0.63 0.77 0.75
sensitivity 0.55 0.71 0.64 0.62 0.75 0.68 0.66 0.55 0.58 0.60
specificity 0.72 0.80 0.63 0.84 0.84 0.69 0.80 0.54 0.82 0.83
precision 0.67 0.79 0.63 0.80 0.82 0.68 0.77 0.52 0.76 0.79
accuracy 0.63 0.75 0.63 0.73 0.80 0.68 0.73 0.53 0.70 0.71

(b) 30m

84m
gender male female
feature
group BSV BVV BEV BCV all BSV BVV BEV BCV all

ROC-AUC 0.67 0.76 0.61 0.78 0.82 0.63 0.71 0.62 0.74 0.75
sensitivity 0.60 0.64 0.44 0.70 0.70 0.68 0.64 0.55 0.64 0.70
specificity 0.68 0.80 0.78 0.77 0.81 0.58 0.70 0.69 0.73 0.72
precision 0.65 0.77 0.66 0.74 0.78 0.62 0.68 0.64 0.70 0.72
accuracy 0.64 0.73 0.61 0.73 0.76 0.63 0.67 0.62 0.69 0.71

(c) 84m

9.2.2 Early Prediction

Trying to predict the OA from its earliest stages using only texture features, we first
employed unsupervised learning (K-means) on groups that were selected according to
criteria presented in Section 4. With it we obtained a maximum ROC-AUC score of
57% and 55% for males and females, using all features combined after feature reduction
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with Random Forests. The score did not improve significantly over the versions without
feature selection (54% and 53% for males and females).

In the next step we trained another linear SVM and employed feature selection according
to the SelectFromModel heuristic which was presented above. The simple SVM without or
with feature selection through Random Forests did not perform very well. The maximum
ROC-AUC score obtained in this fashion was 69%, using all features for training and
100-fold cross-validation.

Table 9.3: OA early prediction maximum scores obtained by all four algorithms for males
and females separately when selecting features with SelectFromModel. The combined
scores are ROC-AUC scores as well, but computed on models trained on the complete
pool of features. The sensitivity, specificity, precision and accuracy of the best-performing
models are also given. MOST data set.

gender male female
feature
group BSV BVV BEV BCV all BSV BVV BEV BCV all

ROC-AUC 0.63 0.69 0.65 0.75 0.76 0.68 0.63 0.62 0.70 0.76
sensitivity 0.50 0.60 0.59 0.66 0.66 0.58 0.56 0.63 0.65 0.67
specificity 0.77 0.75 0.68 0.78 0.78 0.76 0.69 0.62 0.70 0.76
precision 0.69 0.71 0.65 0.75 0.75 0.71 0.65 0.62 0.69 0.74
accuracy 0.63 0.67 0.63 0.72 0.72 0.67 0.63 0.62 0.68 0.72

As one can observe, the highest scores are obtained by BCV features (75% and 70% for
males and females respectively), while a combination of all features yields higher, but
again similar results for both (76% and 76% respectively, as shown in Figure 9.9). We
furthermore computed the two-sample t-statistic of the scores obtained by both classifiers
(males and females) to test the null hypothesis that the distribution of the scores obtained
are equal, which yielded p > 0.05, meaning that there is not enough evidence in the data
to reject the hypothesis. In other words, we assume that there is no significant statistical
difference between men and women in terms of classification scores.

We also looked at the top-ten-scoring features of the classifiers. These top-ten-scoring
features were identified by counting the number of times each feature was selected in
the SelectFromModel approach. The results are plotted in Figure 9.10. We can observe
that 8 out of 10 features for the males and 6 out of ten for the females from the top ten
are BCV features. This result matches the results from Tables 9.2 and 9.3, showing that
BCV produces overall the best performing set of features for OA prediction purposes as
well. At the same time, 9 out of 10 features for males and 5 out of ten features for females
from the top ten are features measured on the medial sector of the knee, where generally
the largest loads are generally registered [101]. Moreover, 3 out of 10 features for males
and 4 out of 10 features for females are measured on the femur. This observation made
us interested in investigating the influence of the femural features on the classification
results. Thus, we applied the same pipeline on the feature pool after filtering out the
femural features (ending with "RMF" or "RLF").

95



9. Results

The ROC-AUC of the optimal features (the ones that obtained the highest scores as
seen in Figure 9.9) can be seen in Figure 9.11 for males and in Figure 9.12 for females
for all feature groups separately. To compute this we first selected the features that
obtained maximum scores based on the model trained with a previous application of
SelectFromModel and fed them into another linear SVM for training. All the obtained
results are listed in Table 9.3 for both females and males. The metrics of the best model
configuration that was derived from the ROC-curve are also shown.

The influence of the femur features is shown in Figure 9.13 for both males and females.
We observe that there must be a significant difference in the performance of the classifier
with and without femur features as expected judging by the ten best features presented
in Figure 9.10. This fact is confirmed by two-sample t-tests where we compared the
means of the classifier scores obtained by the classifiers in turn: with and without femural
features. The tests yielded p-values < 0.05 for both women and men. In other words, the
null hypothesis that the mean of the scores of the "femural" and "non-femural" classifiers
are equal can be rejected.

Figure 9.9: Typical output of a SelectFromModel applied with a SVM classifier on the
entire feature pool.
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(a) male
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(b) female

Figure 9.10: Top thirty features that were selected by the male classifier (a) and by
the female classifier (b) in the early prediction task. The frequency denotes how often
the feature was selected as important by the SelectFromModel technique. The ten best
features are displayed in red.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.11: OA early prediction optimal scores obtained (a)-(d) by each algorithm
independently and all algorithms combined (e) for males. The green arrow points to the
best model configuration that achieves the highest model metrics. These model metrics
are also displayed. MOST data set.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.12: OA early prediction optimal scores obtained (a)-(d) by each algorithm
independently and all algorithms combined (e) for females. The green arrow points to the
best model configuration that achieves the highest model metrics. These model metrics
are also displayed. MOST data set.
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(a) all features for females (b) all non-features for females

(c) all features for males (d) all non-features for males

Figure 9.13: The influence of femoral features on the early prediction of OA for (a)-(b)
females and (c)-(d) males. The plots on the left side show all 126 features including
femoral features. The plots on the right side show the ’pruned’ features, with no femural
features. The green arrow points to the best model configuration that achieves the highest
model metrics. These model metrics are also displayed. MOST data set.
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9.2.3 Progression

To get an idea whether our algorithms could track the changes in KL scores or OA
incidence, we first looked at the means of the groups we defined in Section 4.2.1 over the
three visits. The results are displayed in Figures 9.14 and 9.15 for males and females
respectively. We can observe that in general there is a tendency among the values to
drop for the ’KL worsening’ group and for the ’OA incidence’ group as compared to the
’KL constant’ group and ’stay healthy’ group, which remain constant across the study.

To have a better confirmation of any significant differences between the visits, we employed
repeated measures one-way ANOVA given the dependency of the samples across the
study. The independent variable was ’time’, i.e., the visit (BL, 30m and 84m) and the
dependent variables are the 126 engineered features.

First, we tested the ’conditions’ (visits in this case) for variance heterogeneity using
O’Brien’s test [102] regarding each of the 126 available features (dependent variables).
The O’Brien test is based on the null hypothesis that the variances under the different
conditions are equal. We thus, filtered out all the features for which we obtained a p-value
> 0.05. For those features, we could not reject the null hypothesis at a significance level
of 5%. In other words, we can assume that the measurements recorded at the three
different visits for these filtered features come from distributions with equal variances.

Second, for the significant features with respect to the O’Brien Test, we employed
repeated measures ANOVA to find possible significant differences between the means
of the samples coming from different visits. This test is able to detect whether there is
a significant difference somewhere among the conditions, but it is not able to identify
the exact conditions that produced samples that are significantly different. Thus, this
step narrowed the feature pool even further. We excluded all the features for which the
ANOVA p− value was bigger than 0.05. For these features we could not reject the null
hypothesis that the sample means are equal. For the remaining features, we reject this
assumption and consider the means different.

Third, we employed a post-hoc Tukey HSD test for multiple cross comparisons of different
features under different conditions. For each comparison, all the significant features were
recorded.

The above steps were applied for all the groups of patients defined: KL-constant, KL-
worsening, OA-incidence, stay-healthy. We obtained the following features, per group:

1. ’KL constant’:

a) BL vs. 30m : no features
b) 30m vs. 84m : no features
c) BL vs. 84m : no features

2. ’KL worsening’:
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a) BL vs. 30m : no features
b) 30m vs. 84m : no features
c) BL vs. 84m : no features

3. ’stay healthy’:

a) BL vs. 30m : no features
b) 30m vs. 84m : no features
c) BL vs. 84m : no features

4. ’OA incidence’:

a) BL vs. 30m : ’BVV:V_RM1’
b) 30m vs. 84m : no features
c) BL vs. 84m : ’BVV:V_RL1’, ’BVV:V_RM2’, ’BVV:D1_RM2’, ’BVV:M_RM2’,

’BVV:H_RM2’, ’BVV:V_RL2’, ’BVV:D1_RL2’, ’BVV:M_RL2’, ’BVV:H_RL2’,
’BVV:V_RM1’, ’BVV:D1_RM1’, ’BVV:M_RM1’, ’BVV:H_RM1’, ’BVV:V_RMF’,
’BSV:V_RM2’, ’BSV:M_RM2’, ’BSV:H_RL2’, ’BSV:V_RL2’, ’BSV:M_RL2’,
’BSV:H_RM1’, ’BSV:V_RM1’, ’BSV:M_RM1’, ’BSV:V_RMF’, ’BEV_RL2’,
’BEV_RM1’

We observe that the ’KL constant’ and ’stay healthy’ groups did not produce any features
that are significantly different between the visits taken pair-wise. The ’KL worsening’
group only produced a single feature that was significantly different between BL and
84m, i.e., across a larger period of time. This feature is fractal-related and was measured
in the medial compartment of the TB. However, the ’OA incidence’ group produced
more features for the BL vs. 84m cross-comparison that are listed above. 64% of the
features produced were measured at the medial compartment where the highest loads are
expected [103]. For the smallest time interval only one feature with significant differences
was detected with the exception of a single one, i.e., the same feature (BVV:V_RM1)
that was detected in the ’KL worsening’ group. Here, the difference was recorded between
the first two visits, whereas for the KL-worsening group it was recorded between the last
two visits. We assume that no significant differences were recorded between the visits
of the ’KL worsening’ group, since this group per definition also contains patients for
which the KL score changed only by a single unit. This leads us to the conclusion that
the algorithms are not sensitive to slight changes in the progression of the disease, but
rather detect the early onset and changes over longer periods of time.

We also notice that the significant feature pool of the ’OA incidence’ group between BL
and 84m is dominated by fractal features. 92% of the detected features are fractal-based
and only 8% are entropy-based. Out of these, 40% are features measured in the vertical
direction (i.e., theoretically along the trabeculae), while the rest of 60% is equally divided
among mean, horizontal, and diagonal features. Unexpectedly, no BCV features were
detected as significant. Only 8% (2 features) are femur features.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.14: OA progression visualization of sample means. (a)-(d) each feature group
independently and (e) all algorithms combined for males.
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(a) BSV features (b) BVV features

(c) BEV features (d) BCV features

(e) all features

Figure 9.15: OA progression visualization of sample means. (a)-(d) each feature group
independently and (e) all algorithms combined for females.
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In this chapter we have presented the outcomes of the statistical tests employed on our
texture features and the classification scores obtained by the trained models. We observe
that in the case of the Portugal data, the unsupervised learning approach with the basic
K-means algorithm performs very well when considering only the subspace of the most
significant features: 71% in terms of ROC-AUC. With supervised learning, the best
configuration of a SVM model trained on the entire feature pool produces a ROC-AUC
score of 84% with 73% sensitivity, 85% specificity, 83% precision and 79% accuracy.
Feature selection has a negative impact on the metrics. It is worth mentioning that the
highest contributors to the correct learning of the model are the BCV medial features
and removing the femural features does have a significant impact on the performance
of the models. In general, the most sensitive model was found to be the one built on
BSV features (73%). The model trained only on BVV features was the most specific and
most precise (83% and 80%). The most accurate model was trained on the whole feature
pool (79%). We note that the lowest sensitivity was achieved by the BVV-, BEV- and
BCV-based models, i.e., around 65%.

In the case of the MOST data set we notice that the BCV produces the best features
if considering the algorithms independently, obtaining high ROC-AUC scores for the
discrimination and early prediction tasks, both for men and for women. Considering all
features combined, the scores improve even further. However, for disease progression, the
fractal features produced from BVV and BSV appear to be of more significance. Similar
to the Portugal data set, the impact of the femoral features is crucial on the classification
score, as models trained on non-femoral features only produce significantly lower scores
(p < 0.05). For the discrimination task, we notice that the model trained on the entire
feature pool showed the highest ROC-AUC scores and the highest sensitivity, specificity,
precision, and accuracy, i.e., higher than 70%, for the male and female participants at BL,
30m and 84m. The sensitivity of the model trained for females at 30m is an exception,
reaching only 60%. The situation is similar in the case of the early prediction models.
The ROC-AUC scores of the best configurations of the models trained on all features
exceed 75% ROC-AUC, while the other model metrics lie around 75% with the exception
of the sensitivity which is slightly below 70%.
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CHAPTER 10
Conclusion

In this work we have conducted a clinical experiment to investigate the possibility of
detecting early signs of OA in the human knee TB based on engineered textural features
from simple 2D knee radiographs. We first gave a motivation for this area of research
based on the current worldwide reports and statistics on the negative impact on the
general economy and the quality of life of individuals caused by OA. The early detection
of OA might render some of earliest bone-damaging processes reversible provided that
the treatment is applied in time. Also, by using conventional X-rays and automating the
detection, the diagnosis costs (in time and money) can be significantly reduced.

Second, we shortly presented novel approaches from the literature that attempt at solving
the early-OA problem in different ways. From the use of texture features to the use of
MRI images for lesion detection and blood serum tests, the need for early detection tests
have become clear lately and an increasing number of publications attempt to find a
cheap and reliable way that could predict OA.

Third, we provided a biological background of OA by presenting the general knee anatomy
and the microscopical architecture of the TB. We also described some of the earliest
known processes to date that are known to weaken the bone and prepare it for the onset
of OA. The earliest changes due to OA in the TB of the knee, that are undetectable by
conventional methods, are analyzed as well. These changes happen generally a long time
before the affection becomes symptomatic and the patient becomes aware of it.

Fourth, we described the image data sets that we use in our experiment in detail: the
Portugal data set and the MOST data set. At the same time, based on the available data
we defined our investigation tasks that would be possible for each data set, i.e., patient
discrimination attempt using textural features (for both Portugal and MOST data sets),
early prediction of the disease and disease progression tracking (for the MOST data set,
since it is a longitudinal OA study).
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Fifth, we discussed four algorithms that we use for feature engineering in detail. We have
thus seen four different approaches at describing the structure complexity in an ROI: two
fractal-based techniques, one entropy-based technique and the last technique based on
Haralick features derived from the GLCM.

Sixth, we created artificial surfaces for each algorithm to serve as a validation basis.
The artificially generated surfaces were developed with fixed, known, and theoretical
parameters (fractal dimension, entropy, homogeneity, correlation, etc.) and the algorithms
that we presented were employed on these surfaces to test how well they approximate
the theoretical parameters through the applied heuristics.

Seventh, we introduced and explained the statistical methods and models that we have
used to interpret the engineered features. We discussed different statistical tests used
to search for statistically significant differences among samples of features coming from
ill and healthy patients. We also presented simple neural networks (SVM) that are
trained to learn the differences between these patient groups and predict the diagnosis of
a new patient. All discussed models that were used in this work were introduced and
mathematically presented with a view of understanding their suitability for characterizing
the present data and providing answers to our research questions.

Last but not least, we presented and interpreted the outputs of the used statistical
methods. For the Portugal data set we have obtained the highest classification score
of 84% in terms of ROC-AUC using all 126 features combined in a linear SVM model
without feature reduction. The best model produced a sensitivity of 73%, a specificity of
85%, a precision of 83% and an accuracy of 79% Most (75%) of the top features were BCV
features and most (75%) were features measured at the medial compartments of the femur.
We have investigated the influence of the femur regions with two separate classifiers.
The scores obtained with the femur features were significantly higher than the scores
obtained by the classifier without the femur features considered. If considered alone,
the BCV features perform the best on the Portugal data set. In the case of the MOST
study we found that for diagnosis tasks, the BCV features obtain the highest scores both
for females and males at all visits (between 70% and 80% in terms of ROC-AUC) if
considered alone, similar to the Portugal data set. The maxima, however, are reached
when considering all the features combined (between 75% and 85%). In general, over 75%
of the features that were found to be significantly different by statistical tests between ill
and healthy participants were BCV features both for males and females.

In the case of the prediction task, the situation is similar. Alone, the BCV features obtain
the highest classification scores (75% and 70% for males and females). The combination of
features improves this even further (76% and 76%), which outperforms the current state
of the art, as we manage to predict the KL score by only using textural features. There
was again no significant difference according to the t-statistic between the distribution of
scores obtained for men and women. 80% of the ten most significant features for males
were BCV features. The influence of the features measured in the femur area have proven
to be crucial. Removing them yields significantly lower scores both for men and women.
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In the case of the disease progression tracking, we have learned that the fractal features
are more suitable as opposed to the other tasks where BCV produced the best features.
92% of the significantly different features between BL and 84m were of fractal nature.
60% of the same features are measured at the medial compartments and the femur
features do not play a significant role (only 2% of the features were measured at the
femur). However, significant differences could only be found between BL and 84m, but
not between BL and 30m or between 30m and 84m in the ’OA incidence’ group. Also,
40% of the features were measured in the vertical direction, which indicates that the
fractal algorithms are sensitive to the trabeculae orientation in the image. The other
groups showed no differences between any of the visits. The BEV features appear to be
unsuitable for the tasks defined in this work, as they were rarely picked as important
features.

109





CHAPTER 11
Future Work

Even though in the present work we were able to build classifiers that are capable of
detecting early signs of OA and of discriminating between healthy and ill patients with
high accuracy, there are still some limitations or unanswered questions. By answering this,
we might bring improvements to our models and/or also to the engineering of features.

A future research idea would be to investigate whether the algorithms are influenced by
the pixel spacing or by the resolution of the images. Also the influence of the machine
manufacturer is not known, but we already posses strong evidence that even though the
machine parameters are set to be the same, the recording of an X-Ray image is affected
by other production parameters that are not accessible during post-production.

A strong limitation of this work is that we were not yet able to define certain thresholds
that are generally valid. In other words, there is no boundary per feature (group) below
which (or above which) one could say that all regions that produce values in those
intervals come from unhealthy (or healthy) patients. Before such a threshold can be
found, we assume that we must normalize the images initially to account for all the
differences that come from the machine (production) parameters and other possible
influential factors.

An interesting research area regarding these algorithms might be their extension to the
detection of other affections (such as OP, RA, bone cysts, implant loosening) in other
anatomical regions, such as the hips, hands, spine. Other than osseous tissues, we have
also shortly tested the algorithms on mammographies for the detection of tumors and on
microscopic images of red blood cells for the automatic detection of their agglomeration.
The results encourage further research in the areas, but more image data is needed to
safely apply statistical methods and to build classification models.

Throughout this study we have noticed that the BEV is rarely chosen as a significant
feature. An idea would be to actually test the importance of this feature group in the
same manner that we tested the influence of the femur regions. Does the inclusion of
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the BEV feature change the prediction scores of our models? Provided that the results
are not significantly improved by the consideration of the BEV features, we propose
an improvement to the algorithm. Instead of computing a single mean measure per
chosen region, the algorithm could be adapted to calculate an entire feature image by
subdividing the original ROI into subregions. The same idea could also be applied to the
other procedures as well to investigate whether the scores can be improved.

The features measured in the lateral compartments were as well rarely selected as
important to the model. We could investigate whether we could entirely remove these
features from consideration and focus only on the medial compartments. It is rarely the
case that the bone is so damaged that the lateral compartments are equally or more
affected by bone deformation as the medial ones.

In this work we assumed the ideal case that the features we measure must be linearly
separable and thus we employed a SVM with a linear kernel to build the models. However,
the separation boundary could be in fact much more complex than a simple hyperplane,
given the high number of biological and risk factors that directly or indirectly influence
the bone structure.

Last bun not least, the applicability of the algorithms on other modalities, such as CT or
MRI data, must also be investigated. This is strongly related to the idea of a possible
extension of the algorithms to work in 3D spaces as well. Also, in this work we restricted
the experiments to more or less homogeneous data, i.e., the models were built on image
data coming from the same study. It would be interesting to investigate whether the
combination of data sets would improve or negatively impact the scores.
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Glossary

bone condyle a rounded protuberance at the end of some bones, forming an articulation
with another bone.. 25

continuous-time a continuous-time stochastic process is one in which the random
variable takes a contiguous set of values. 43

Gaussian process the Gaussian process is a stochastic process in which every random
variable is normally distributed. In addition, a

nite set of those variables is multivariately normally distributed.. 43

Golden Section Search The GSS is an iterative technique which allows one to

ne a minimum or maximum for a unimodal function by repeatedly narrowing the
intervals in which the respective extremum is known to lie. At each step, the
intervals are narrowed by the golden ratio.. 45

homogeneous function a function is homogeneous of order n if it satisfies f(tx) =
tnf(x). In other words if the argument of the function is multiplied by a factor,
then the result will come out multiplied by the nth power of that specific factor.. 43

Hurst exponent statistically, the Hurst coefficient is a measure of long-range depen-
dency of time series. This means that the Hurst exponent is a global property if a
signal. Given the fact that fractal signals are self-similar, ‘the local properties are
reflected in the global ones’ [70, p. 1]. 35, 36, 39, 40, 42, 43

long-range dependency also known as long-range memory, long memory or long-range
persitency — a term that arises when studying the decay of statistical dependency
(autocorrelation) of two or more measurments with increasing time between the
measurments. 113

osteophyte a rounded protuberance at the end of some bones, forming an articulation
with another bone.. 2
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stationary process a stationary process is a stochastic process whose combined proba-
bility distribution does not change when shifted in time. Consequently, the mean
and variance are also stationary.. 43
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fBf fractal Brownian function. 42
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FD fractal dimension. 28, 29, 34, 35, 42, 51, 52, 55, 57

fGn fractal Gaussian noise. 43, 44

GLCM Gray-Level Co-occurrence Matrix. 47, 57, 102, 108

GLRLM grey level run length matrix. 8

H Hurst coefficient. 35, 39, 40, 44, 45, 51–55, 108
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IB Lab Image Biopsy Lab G.m.b.H.. 4, 25

IID independent and identically distributed. 73

JSN Joint Space Narrowing. 4, 23, 24, 107

KL Kellgren-Lawrence grade. 4, 7, 23, 25, 28, 29

LBP low back pain. 26

MLR multi-linear regression. 77, 78

MOAKS MRI OA knee score. 7

MOST Multicenter Osteoarthritis Study. vii, xiii, 28, 29, 31, 88–90, 100, 102, 111

MRI magnetic resonance imaging. xiii, 7, 28, 101

NCP non-collagenous proteins. 12, 16, 17

OA osteoarthritis. xi, xiii, xiv, 1–5, 7–10, 12, 14, 16–30, 51, 59, 63, 71–74, 77, 79, 80, 86,
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OARSI Osteoarthritis Research Society International. 2, 23
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PCA Principal Component Analysis. xiv, 75, 81, 109

PDF probability density function. 43, 44

QP Quadratic Programming. 72

RA rheumathoid arthritis. 8, 26, 105

RMANOVA repeated-measures analysis of variance. 68

RMD Rheumatic and musculoskeletal disease. 26, 27

ROC-AUC Area Under the Receiver Operating Characteristic Curve. x, xi, 4, 79,
84–91, 100, 109, 111

ROI region of interest. 5, 8, 25, 27, 29, 32, 41, 43, 77, 78, 90, 102, 106–108

SPR Portuguese Society of Rheumatology. 26

SVM Support Vector Machine. xiv, 5, 72, 73, 79, 85, 87–91, 100, 102, 106, 109

TB trabecular bone. xi, 2, 3, 11, 12, 22, 33, 35, 37, 39, 40, 43, 51, 59, 101, 107
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122



Bibliography

[1] C. R. Chu, A. A. Williams, C. H. Coyle, and M. E. Bowers, “Early diagnosis to
enable early treatment of pre-osteoarthritis,” Arthritis Research & Therapy, vol. 14,
no. 3, p. 212, 2012.

[2] F. Bronner, M. Farach-Carson, and H. I. Roach, Bone and Developement, 2010.

[3] C. Helmick, “The Burden of Musculoskeletal Diseases in the United States,” 2017.
[Online]. Available: www.boneandjointburden.org

[4] M. Favero, R. Ramonda, M. B. Goldring, S. R. Goldring, and L. Punzi, “Early
knee osteoarthritis,” in RMD Open, vol. 1, 2015.

[5] G. Lester, J. McGowan, and J. Panagis, “Handout on Health: Osteoarthritis,”
2016. [Online]. Available: www.niams.nih.gov

[6] J. Dequeker and F. P. Luyten, “The history of osteoarthritis-osteoarthrosis,”
Annals of the Rheumatic Diseases, vol. 67, no. 1, pp. 5–10, 2008. [Online]. Available:
http://ard.bmj.com/cgi/doi/10.1136/ard.2007.079764

[7] R. S. Karsh and J. D. McCarthy, “Archeology and Arthritis,” A.M.A Archives of
Internal Medicine, vol. 105, no. 4, pp. 640–644, 1960.

[8] R. F. Loeser, S. R. Goldring, C. R. Scanzello, and M. B. Goldring, “Osteoarthritis:
A disease of the joint as an organ,” Arthritis and Rheumatism, vol. 64, no. 6, pp.
1697–1707, 2012.

[9] “Medical Expenditures Panel Survey (MEPS).” Agency for Healthcare Research
and Quality. U.S. Department of Health and Human Services, Tech. Rep. [Online].
Available: http://meps.ahrq.gov/mepsweb

[10] K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell,
D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology:
Grading and staging,” Osteoarthritis and Cartilage, vol. 14, no. 1, pp. 13–29, 2006.

[11] C. Buckland-Wright, “Subchondral bone changes in hand and knee osteoarthritis
detected by radiography,” Osteoarthritis and Cartilage, vol. 12, pp. 10–19, 2004.

123

www.boneandjointburden.org
www.niams.nih.gov
http://ard.bmj.com/cgi/doi/10.1136/ard.2007.079764
http://meps.ahrq.gov/mepsweb


[12] F. Bronner and M. C. Farach-Carson, Bone and Development. Sptinger, 2010.

[13] D. B. Burr and M. a. Gallant, “Bone remodelling in osteoarthritis,” Nature
Reviews Rheumatology, vol. 8, no. 11, pp. 665–673, 2012. [Online]. Available:
http://dx.doi.org/10.1038/nrrheum.2012.130

[14] T. Neogi, “Clinical Significance of Bone Changes in Osteoarthritis,” in Osteorheuma-
tology 2011 : International Congress on Bone Involvement in Arthritis, vol. 14,
no. S2, 2012, p. 2.

[15] A. Chang-Miller, Osteoarthritis, 2016. [Online]. Avail-
able: http://www.mayoclinic.org/diseases-conditions/osteoarthritis/
diagnosis-treatment/diagnosis/dxc-20198270

[16] N. L. Fazzalari and I. H. Parkinson, “Fractal Dimension and Architecture of
Trabecular Bone,” Journal of Pathology, vol. 178, no. 1, pp. 100–105, 1996.

[17] M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature anal-
ysis of trabecular bone: evaluation of different methods to detect early osteoarthritis
in knee radiographs.” Proceedings of the Institution of Mechanical Engineers. Part
H, Journal of Engineering in Medicine, vol. 223, no. 2, pp. 211–236, 2009.

[18] T. Lundahl, W. J. Ohley, S. M. Kay, and R. Siffert, “Fractional brownian
motion: a maximum likelihood estimator and its application to image texture.”
IEEE Transactions on Medical Imaging, vol. 5, no. 3, pp. 152–61, 1986. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/18244001

[19] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features
for Image Classification,” pp. 610–621, 1973. [Online]. Available: http:
//ieeexplore.ieee.org/document/4309314/

[20] T. Janvier, R. Jennane, H. Toumi, and E. Lespessailles, “Subchondral tibial bone
texture predicts the incidence of radiographic knee osteoarthritis: data from the
Osteoarthritis Initiative,” Osteoarthritis and Cartilage, vol. 25, no. 12, pp. 2047–
2054, 2017.

[21] V. B. Kraus, S. Feng, S. C. Wang, S. White, M. Ainslie, A. Brett, A. Holmes, and
H. C. Charles, “Trabecular morphometry by fractal signature analysis is a novel
marker of osteoarthritis progression,” Arthritis and Rheumatism, vol. 60, no. 12,
pp. 3711–3722, 2009.

[22] T. Woloszynski, P. Podsiadlo, G. W. Stachowiak, M. Kurzynski, L. S. Lohmander,
and M. Englund, “Prediction of progression of radiographic knee osteoarthritis
using tibial trabecular bone texture,” Arthritis and Rheumatism, vol. 64, no. 3, pp.
688–695, 2012.

[23] S. Oancea, “Variance Orientation Transform,” Bachelor’s Thesis, TU Wien, 2016.

124

http://dx.doi.org/10.1038/nrrheum.2012.130
http://www.mayoclinic.org/diseases-conditions/osteoarthritis/diagnosis-treatment/diagnosis/dxc-20198270
http://www.mayoclinic.org/diseases-conditions/osteoarthritis/diagnosis-treatment/diagnosis/dxc-20198270
http://www.ncbi.nlm.nih.gov/pubmed/18244001
http://ieeexplore.ieee.org/document/4309314/
http://ieeexplore.ieee.org/document/4309314/


[24] L. Sharma, J. S. Chmiel, O. Almagor, D. Dunlop, A. Guermazi, J. M. Bathon,
C. B. Eaton, M. C. Hochberg, R. D. Jackson, C. K. Kwoh, W. J. Mysiw, M. D.
Crema, F. W. Roemer, and M. C. Nevitt, “Significance of preradiographic magnetic
resonance imaging lesions in persons at increased risk of knee osteoarthritis,”
Arthritis and Rheumatology, vol. 66, no. 7, pp. 1811–1819, 2014.

[25] D. J. Hunter, A. Guermazi, G. H. Lo, A. J. Grainger, P. G. Conaghan, R. M.
Boudreau, and F. W. Roemer, “Evolution of semi-quantitative whole joint assess-
ment of knee OA: MOAKS (MRI Osteoarthritis Knee Score),” Osteoarthritis and
Cartilage, vol. 19, no. 8, pp. 990–1002, 2011.

[26] U. Ahmed, A. Anwar, R. S. Savage, P. J. Thornalley, and N. Rabbani,
“Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis
of osteoarthritis of the knee and typing and progression of arthritic disease,”
Arthritis Research & Therapy, vol. 18, no. 1, p. 250, 2016. [Online]. Available:
http://arthritis-research.biomedcentral.com/articles/10.1186/s13075-016-1154-3

[27] L. Shamir, S. M. Ling, W. Scott, A. Bos, N. Orlov, T. J. MacUra, D. M. Eckley,
L. Ferrucci, and I. G. Goldberg, “Knee X-ray image analysis method for automated
detection of osteoarthritis,” IEEE Transactions on Biomedical Engineering, vol. 56,
no. 2, pp. 407–415, 2009.

[28] I. Boniatis, L. Costaridou, D. Cavouras, I. Kalatzis, E. Panagiotopoulos, and
G. Panayiotakis, “Osteoarthritis severity of the hip by computer-aided grading of
radiographic images,” Medical and Biological Engineering and Computing, vol. 44,
no. 9, pp. 793–803, 2006.

[29] M. C. Corporation, Mammal Anatomy: An Illustrated Guide. Marshall
Cavendish, 2010. [Online]. Available: http://books.google.com/books?id=
mTPI{_}d9fyLAC{&}pgis=1

[30] K. S. Saladin, C. A. Gan, and H. N. Cushman, Anatomy & Physiology. New York:
McGraw-Hill Education, 2017.

[31] P. J. Thurner, Tissue Biomechanics: TU Wien Lecture Notes, 2017.

[32] A. Unsworth, D. Dowson, and V. Wright, “The Functional Behavior of Human
Synovial Joints-Part I,” Journal of Lubrication Technology, pp. 369–376, 1975.

[33] “Engineering ABC. Coefficient of friction, rolling resistance and aerodynamics.”
[Online]. Available: http://www.tribology-abc.com/abc/cof.htm

[34] J. Wolff, The Law of Bone Remodelling, 1987, vol. 155.

[35] J. G. Betts, P. Desaix, E. Johnson, J. E. Johnson, O. Koral, D. Kruse, B. Poe,
J. A. Wise, M. Womble, and K. A. Young, Anatomy & Physiology, 2013. [Online].
Available: https://openstax.org/details/books/anatomy-and-physiology

125

http://arthritis-research.biomedcentral.com/articles/10.1186/s13075-016-1154-3
http://books.google.com/books?id=mTPI{_}d9fyLAC{&}pgis=1
http://books.google.com/books?id=mTPI{_}d9fyLAC{&}pgis=1
http://www.tribology-abc.com/abc/cof.htm
https://openstax.org/details/books/anatomy-and-physiology


[36] R. Wilson, “Bone,” 2008. [Online]. Available: https://commons.wikimedia.org/
wiki/User:Pbroks13

[37] D. Richfield, “Medical gallery of Blausen Medical 2014,” Wik-
iJournal of Medicine, vol. 1, no. 2, pp. 9–11, 2014. [On-
line]. Available: https://en.wikiversity.org/wiki/WikiJournal{_}of{_}Medicine/
Medical{_}gallery{_}of{_}Blausen{_}Medical{_}2014

[38] D. B. Burr, M. B. Schaffler, and R. G. Frederickson, “Composition of the cement
line and its possible mechanical role as a local interface in human compact bone,”
Journal of Biomechanics, vol. 21, no. 11, 1988.

[39] SEER, “Anatomy & Physiology. Skeletal System. Structure of Bone Tissue.” 2011.
[Online]. Available: https://training.seer.cancer.gov/anatomy/skeletal/tissue.html

[40] P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, “Structure
and mechanical quality of the collagen–mineral nano-composite in bone,” J.
Mater. Chem., vol. 14, no. 14, pp. 2115–2123, 2004. [Online]. Available:
http://xlink.rsc.org/?DOI=B402005G

[41] A. Ascenzi and E. Bonucci, “The compressive properties of single osteons,” The
Anatomical Record, vol. 161, no. 3, pp. 377–391, 1968.

[42] P. J. Thurner, “Atomic force microscopy and indentation force measurement of
bone,” WIREs Nanomedicine and Nanobiotechnology, vol. 1, no. December, pp.
624–649, 2009.

[43] O. L. Katsamenis, T. Jenkins, and P. J. Thurner, “Toughness and damage
susceptibility in human cortical bone is proportional to mechanical inhomogeneity
at the osteonal-level,” Bone, vol. 76, pp. 158–168, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.bone.2015.03.020

[44] N. Arden, F. Blanco, C. Cooper, A. Guermazi, D. Hayashi, D. Hunter,
M. K. Javaid, F. Rannou, F. W. Roemer, and J.-Y. Reginster, Atlas of
Osteoarthritis, 2014. [Online]. Available: https://books.google.com/books?id=
qT1FBgAAQBAJ{&}pgis=1

[45] M. A. MacConaill, “Joint,” 2017. [Online]. Available: https://www.britannica.com/
science/joint-skeleton

[46] R. Wittenauer, L. Smith, and K. Aden, “Priority Medicines for Europe and
the World " A Public Health Approach to Innovation " Update on 2004
Background Paper 6.12 Osteoarthritis,” World Health Organisation, pp. 1–31, 2013.
[Online]. Available: http://www.who.int/medicines/areas/priority{_}medicines/
BP6{_}12Osteo.pdf

126

https://commons.wikimedia.org/wiki/User:Pbroks13
https://commons.wikimedia.org/wiki/User:Pbroks13
https://en.wikiversity.org/wiki/WikiJournal{_}of{_}Medicine/Medical{_}gallery{_}of{_}Blausen{_}Medical{_}2014
https://en.wikiversity.org/wiki/WikiJournal{_}of{_}Medicine/Medical{_}gallery{_}of{_}Blausen{_}Medical{_}2014
https://training.seer.cancer.gov/anatomy/skeletal/tissue.html
http://xlink.rsc.org/?DOI=B402005G
http://dx.doi.org/10.1016/j.bone.2015.03.020
https://books.google.com/books?id=qT1FBgAAQBAJ{&}pgis=1
https://books.google.com/books?id=qT1FBgAAQBAJ{&}pgis=1
https://www.britannica.com/science/joint-skeleton
https://www.britannica.com/science/joint-skeleton
http://www.who.int/medicines/areas/priority{_}medicines/BP6{_}12Osteo.pdf
http://www.who.int/medicines/areas/priority{_}medicines/BP6{_}12Osteo.pdf


[47] J. W. J. Bijlsma, F. Berenbaum, and F. P. J. G. Lafeber, “Osteoarthritis: An
update with relevance for clinical practice,” The Lancet, vol. 377, no. 9783, pp.
2115–2126, 2011.

[48] J. H. Klippel, Primer on the Rheumatic Diseases, 13th ed., J. H. Stone, L. J.
Crofford, and P. H. White, Eds. New York: Springer Science+Business Media,
2008.

[49] D. J. Hunter and T. D. Spector, “The role of bone metabolism in osteoarthritis.”
Current rheumatology reports, vol. 5, no. 1, pp. 15–9, 2003. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12590880

[50] P. G. Conaghan, H. Vanharanta, and P. A. Dieppe, “Is progressive osteoarthritis an
atheromatous vascular disease?” Annals of the rheumatic diseases, vol. 64, no. 11,
pp. 1539–41, 2005.

[51] D. D. Kumarasinghe, E. Perilli, H. Tsangari, L. Truong, J. S. Kuliwaba,
B. Hopwood, G. J. Atkins, and N. L. Fazzalari, “Critical molecular regulators,
histomorphometric indices and their correlations in the trabecular bone in primary
hip osteoarthritis,” Osteoarthritis and Cartilage, vol. 18, no. 10, pp. 1337–1344,
2010. [Online]. Available: http://dx.doi.org/10.1016/j.joca.2010.07.005

[52] C. J. Menkes and N. E. Lane, “Are osteophytes good or bad?” Osteoarthritis and
Cartilage, vol. 12, no. SUPLL., pp. 53–54, 2004.

[53] H. J. Braun and G. E. Gold, “Diagnosis of Osteoarthritis: Imaging,” Bone, vol. 51,
no. 2, pp. 278–288, 2012.

[54] J. H. Kellgren and J. S. Lawrence, “Radiological assessment of osteo-arthrosis.”
Annals of the rheumatic diseases, vol. 16, no. 4, pp. 494–502, 1957.

[55] W. Waldstein, G. Perino, S. L. Gilbert, S. A. Maher, R. Windhager, and F. Boettner,
“OARSI osteoarthritis cartilage histopathology assessment system: A biomechanical
evaluation in the human knee,” Journal of Orthopaedic Research, vol. 34, no. 1, pp.
135–140, 2016.

[56] L. Shamir, S. M. Ling, W. Scott, M. Hochberg, L. Ferrucci, and I. G. Goldberg,
“Early detection of radiographic knee osteoarthritis using computer-aided analysis,”
Osteoarthritis and Cartilage, vol. 17, no. 10, pp. 1307–1312, 2009.

[57] A. M. Rodrigues, N. Gouveia, L. P. da Costa, M. Eusébio, S. Ramiro, P. Machado,
A. F. Mourão, I. Silva, P. Laires, A. Sepriano, F. Araújo, P. S. Coelho, S. Gonçalves,
A. Zhao, J. E. Fonseca, J. M. de Almeida, V. Tavares, J. A. P. da Silva, H. Barros,
J. Cerol, J. Mendes, L. Carmona, H. Canhão, and J. C. Branco, “EpiReumaPt- the
study of rheumatic and musculoskeletal diseases in Portugal: a detailed view of the
methodology,” Acta reumatologica portuguesa, vol. 40, no. 2, pp. 110–124, 2015.

127

http://www.ncbi.nlm.nih.gov/pubmed/12590880
http://dx.doi.org/10.1016/j.joca.2010.07.005


[58] R. Altman, E. Asch, D. Bloch, G. Bole, D. Borenstein, K. Brandt, W. Christy, T. D.
Cooke, R. Greenwald, M. Hochberg, D. Howell, D. Kaplan, W. Koopman, S. Longley,
H. Mankin, D. J. McShane, T. Medsger, R. Meenan, W. Mikkelsen, R. Moskowitz,
W. Murphy, B. Rothschild, M. Segal, L. Sokoloff, and F. Wolfe, “Development
of criteria for the classification and reporting of osteoarthritis: Classification of
osteoarthritis of the knee,” Arthritis & Rheumatism, vol. 29, no. 8, pp. 1039–1049,
1986.

[59] N. A. Segal, M. C. Nevitt, K. D. Gross, J. Hietpas, N. A. Glass, C. E. Lewis,
and J. C. Torner, “The multicenter osteoarthritis study: Opportunities for
rehabilitation research,” PM and R, vol. 5, no. 8, pp. 647–654, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.pmrj.2013.04.014

[60] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, pp. 321–357, 2002.

[61] J. F. Veenland, J. L. Grashius, F. van Der Meer, A. L. Beckers, and E. S. Gelsema,
“Estimation of fractal dimension in radiographs.” Medical Physics, vol. 23, no. 4, pp.
585–94, 1996. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8860906

[62] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, 1948.

[63] A. Pentland, “Fractal based description of natural scenes,” IEEE Transactions on
Pattern analisys and Machine Intelligence, vol. 6, no. 6, pp. 661–672, 1984.

[64] P. Campbell and S. Abhyankar, Fractals, form, chance and dimension.
Freeman. San Francisco, 1978, vol. 1, no. 1. [Online]. Available: http:
//link.springer.com/10.1007/BF03023043

[65] B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman and Company,
1983.

[66] K. Falconer, Fractal Geometry. Wiley, 2004. [Online]. Available: http:
//doi.wiley.com/10.1002/0470013850

[67] B. B. Mandelbrot, “How Long Is the Coast of Britain? Statistical Self-Similarity
and Fractional Dimension,” Science, vol. 156, no. 3775, pp. 636–638, 1967. [Online].
Available: http://www.sciencemag.org/cgi/doi/10.1126/science.156.3775.636

[68] H. E. Hurst, “Long-term storage capacity of reservoirs,” Trans American Society
of Civil Engineers, vol. 116, pp. 770–799, 1951.

[69] H. E. Hurst, R. P. Black, and Y. M. Simaika, Long-term storage: An experimental
study. Constable, 1965.

128

http://dx.doi.org/10.1016/j.pmrj.2013.04.014
http://www.ncbi.nlm.nih.gov/pubmed/8860906
http://link.springer.com/10.1007/BF03023043
http://link.springer.com/10.1007/BF03023043
http://doi.wiley.com/10.1002/0470013850
http://doi.wiley.com/10.1002/0470013850
http://www.sciencemag.org/cgi/doi/10.1126/science.156.3775.636


[70] T. Gneiting and M. Schlather, “Stochastic models which separate fractal dimension
and Hurst effect,” SIAM Review, vol. 46, no. 2, pp. 269–282, 2001. [Online].
Available: http://arxiv.org/abs/physics/0109031

[71] B. Mandelbrot and R. L. Hudson, The (Mis)behavior of Markets: A Fractal View
of Financial Turbulence, annotated ed. Hachette UK, 2007.

[72] IDBHD, “Mandelbrot, Fractal Geometry, & The Language of
Creation,” 2018. [Online]. Available: http://idontbuthedoes.com/
mandelbrot-fractal-geometry-the-language-of-creation/

[73] Science Photo Library, “Fractals in Nature.” [Online]. Available: www.sciencephoto.
com

[74] F. Foundation, “Fractal Dimension.” [Online]. Available: https://fractalfoundation.
org

[75] G. Shevchenko, “Fractional Brownian motion in a nutshell,” no. 1, pp. 1–14, 2014.
[Online]. Available: http://arxiv.org/abs/1406.1956

[76] I. H. Parkinson and N. L. Fazzalari, “Methodological principles for fractal analysis
of trabecular bone,” Journal of Microscopy, vol. 198, no. 2, pp. 134–142, 2000.

[77] M. Wolski, P. Podsiadlo, G. W. Stachowiak, L. S. Lohmander, and M. Englund,
“Differences in trabecular bone texture between knees with and without radiographic
osteoarthritis detected by directional fractal signature method,” Osteoarthritis and
Cartilage, vol. 18, no. 5, pp. 684–690, 2010.

[78] P. Moerters and Y. Peres, Brownian motion. Cambridge University Press, 2010.

[79] R. Harba, H. Douzi, and M. El Hajiji, “Lecture Notes in Computer Science:
Maximum Likelihood Estimation, Interpolation and Prediction for Fractional
Brownian Motion,” in ICISP. Springer-Verlag Berlin Heidelberg, 2012.

[80] T. Carter, “An Introduction to Information Theory and Entropy,” California State
University Stanislaus, Tech. Rep., 2007.

[81] S. Bino, “Grey Level Co-Occurrence Matrices: Generalisation and Some New
Features,” International Journal of Computer Science, Engineering and Information
Technology, vol. 2, no. 2, pp. 151–157, 2012.

[82] M. Hall-Beyer, “Glcm Texture: a Tutorial,” no. February, p. 75,
2017. [Online]. Available: https://prism.ucalgary.ca/bitstream/1880/51900/
1/texturetutorialv3{_}0170329.pdf

[83] J. C. Russ, Fractal Surfaces, 1st ed. Springer US, 1994.

129

http://arxiv.org/abs/physics/0109031
http://idontbuthedoes.com/mandelbrot-fractal-geometry-the-language-of-creation/
http://idontbuthedoes.com/mandelbrot-fractal-geometry-the-language-of-creation/
www.sciencephoto.com
www.sciencephoto.com
https://fractalfoundation.org
https://fractalfoundation.org
http://arxiv.org/abs/1406.1956
https://prism.ucalgary.ca/bitstream/1880/51900/1/texture tutorial v 3{_}0 170329.pdf
https://prism.ucalgary.ca/bitstream/1880/51900/1/texture tutorial v 3{_}0 170329.pdf


[84] S. image development team, “GLCM Texture Features.” [Online]. Avail-
able: http://scikit-image.org/docs/dev/auto{_}examples/features{_}detection/
plot{_}glcm.html

[85] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Elsevier Inc.,
1977.

[86] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.

[87] N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro-Wilk , Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests,” Journal of Statistical Modeling
and Analytics, vol. 2, no. 1, pp. 21–33, 2011.

[88] G. W. A. Snedecor and W. G. A. Cochran, Statistical Methods. Iowa State
University Press, 1967.

[89] H. Levene, “Robust tests for equality of variances.” in Contributions to probability
and statistics. Stanford Univ. Press, 1960, pp. 278–292.

[90] J. Fisher Box, “Guinness, Gossett, Fisher, and small samples,” Statistical Science,
vol. 2, pp. 45–52, 1987.

[91] H. Lohninger, “Kombination mehrerer Einzelverteilungen,” 2012. [Online]. Avail-
able: http://www.statistics4u.info/fundstat{_}germ/dd{_}distributions{_}combi.
html

[92] “Repeated Measures ANOVA,” 2018. [Online]. Available: https://statistics.laerd.
com/statistical-guides/repeated-measures-anova-statistical-guide.php

[93] J. W. Tukey, “Comparing Individual Means in the Analysis of Variance,” Biometrics,
vol. 5, no. 2, pp. 99–114, 1949.

[94] S. Holm, “A Simple Sequentially Rejective Multiple Test Procedure,” Scandinavian
Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[95] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Infor-
mation Theory, vol. 28, no. 2, pp. 129–137, 1982.

[96] I. Steinwart, D. Hush, and C. Scovel, “Learning from dependent observations,”
Journal of Multivariate Analysis, vol. 100, no. 1, pp. 175–194, 2009.

[97] Tin Kam Ho, “Random decision forests,” Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, pp. 278–282, 1995.
[Online]. Available: http://ieeexplore.ieee.org/document/598994/

130

http://scikit-image.org/docs/dev/auto{_}examples/features{_}detection/plot{_}glcm.html
http://scikit-image.org/docs/dev/auto{_}examples/features{_}detection/plot{_}glcm.html
http://www.statistics4u.info/fundstat{_}germ/dd{_}distributions{_}combi.html
http://www.statistics4u.info/fundstat{_}germ/dd{_}distributions{_}combi.html
https://statistics.laerd.com/statistical-guides/repeated-measures-anova-statistical-guide.php
https://statistics.laerd.com/statistical-guides/repeated-measures-anova-statistical-guide.php
http://ieeexplore.ieee.org/document/598994/


[98] K. Pearson, “LIII. <i>On lines and planes of closest fit to systems of
points in space</i>,” Philosophical Magazine Series 6, vol. 2, no. 11, pp.
559–572, 1901. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
14786440109462720

[99] M. Blagojevic, C. Jinks, A. Jeffery, and K. P. Jordan, “Risk factors for onset of
osteoarthritis of the knee in older adults: a systematic review and meta-analysis,”
Osteoarthritis Cartilage, vol. 18, no. 1, pp. 24–33, 2010.

[100] R. K. Chaganti and N. E. Lane, “Risk factors for incident osteoarthritis of the hip
and knee,” Curr Rev Musculoskelet Med, vol. 4, no. 3, pp. 99–104, 2011. [Online].
Available: http://link.springer.com/article/10.1007/s12178-011-9088-5

[101] D. Kumar, K. T. Manal, and K. S. Rudolph, “Knee joint loading during gait
in healthy controls and individuals with knee osteoarthritis,” Osteoarthritis and
Cartilage, vol. 21, no. 2, pp. 298–305, 2013.

[102] P. C. O’Brien and T. R. Fleming, “A Multiple Testing Procedure for
Clinical Trials,” Biometrics, vol. 35, no. 3, p. 549, 1979. [Online]. Available:
http://www.jstor.org/stable/2530245?origin=crossref

[103] D. T. Felson, J. Nui, A. Guermazi, B. Sack, and P. Aliabadi, “Defining radiographic
incidence and progression of knee osteoarthritis: suggested modifications of the
Kellgren and Lawrence scale,” Annals of the Rheumatic Diseases, vol. 70, pp.
1884–1886, 2011.

131

http://www.tandfonline.com/doi/abs/10.1080/14786440109462720
http://www.tandfonline.com/doi/abs/10.1080/14786440109462720
http://link.springer.com/article/10.1007/s12178-011-9088-5
http://www.jstor.org/stable/2530245?origin=crossref

	Kurzfassung
	Abstract
	Introduction
	Problem Statement
	Aim of the Work
	State of the Art
	Methodological Approach
	Structure of the Work

	Related Work
	Lesion Detection from MRI Data
	Synovial Fluid and Blood Serum Tests
	Whole-Joint Analysis from 2D Radiographs
	Gabor Filters and GLRLM Features

	OA Background
	Human Long Bones
	OA Pathophysiology
	Radiographic Imaging

	Data Sets and Hypotheses Definition
	Portugal (EpiReumaPt)
	MOST

	Methods
	Fractals
	Information Theory and other Image Properties
	Feature Summary

	Method Validation
	BSV and BVV Validation
	BCV Validation
	BEV Validation

	Statistical Methods for Hypothesis Testing
	Shapiro-Wilk Test
	F-test
	Levene's Test
	Student's T-test
	ANOVA

	Model Building for Classification and Early Prediction of OA
	K-means Clustering
	SVM
	Random Forests
	PCA

	Results
	Portugal Data
	MOST Data

	Conclusion
	Future Work
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

